• Title/Summary/Keyword: reciprocating motion

Search Result 117, Processing Time 0.033 seconds

Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

  • Yared, Ghassan
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.1
    • /
    • pp.85-90
    • /
    • 2015
  • This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickeltitanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.

Percussive Drilling Application of a Tubular Reciprocating Translational Motion Permanent Magnet Synchronous Motor

  • Zhang, Shujun;Norum, Lars E.;Nilssen, Robert;Lorenz, Robert D.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.419-424
    • /
    • 2012
  • This paper presents a tubular reciprocating translational motion permanent magnet synchronous motor for percussive drilling applications for offshore oil & gas industry. The motor model and rock model are built up by doing force analysis of the motor and analyzing the physical procesof impact. The optimization of input voltage waveforms to maximize the rate of penetration is done by simulations. The simulation results show that the motor can be utilized in percussive drilling applications and achieve a very large impact force. Simulation results for optimization also show that second harmonic input voltage produces a higher rate of penetration than the sine wave and fourth harmonic input voltages.

Characteristics of Friction Noise with Changes of the Natural Frequencies in the Reciprocating Motion (왕복운동에서의 고유주파수 변화에 따른 마찰소음 특성 연구)

  • Choi, Hoil;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2014
  • Experimental study is conducted for investigating the characteristics of friction-induced noise with respect to the variation of system geometry. In this study, a vertically fixed rod is in contact with the reciprocating plate which is controlled by the step motor. Friction noise is generated during the reciprocating motion due to the frictional contact between the plastic pin and the aluminum plate. The frequencies of the friction noise are changed when the height of the rod varies. However, it is found that the vibration modes involved in the friction noise are not changed. It implies that the unstable modes remain unstable regardless of the change of the system geometry, and thus, there are the certain mode shapes which are likely to produce friction noise.

Coupled Oil-Structure Analysis for Piston Motion in Reciprocating Compressors (윤활-구조물 연계해석을 이용한 왕복동형 압축기의 피스톤 거동해석)

  • Moon, Seung-Ju;Cho, Jin-Rae;Ryu, Sung-Hyon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.513-518
    • /
    • 2003
  • The piston slap phenomenon is one of the major noise source of reciprocating compressors used in household electric appliances. In response to public demand, strict regulations are increasingly being imposed on the allowable noise level which is caused mostly by household electric appliances. In this paper, the dynamic behavior of suction and discharge valves are analytically calculated and the lubricant behavior between piston and cylinder are investigated using two-dimensional Reynolds equation. And the piston slap caused by the piston secondary motion is investigated by the finite element method.

  • PDF

Vibration characteristics of endodontic motors with different motion: reciprocation and conventional rotation (왕복운동 및 회전운동 근관성형용 전동모터 간의 진동 양상 비교)

  • Jeon, Yeong-Ju;Kim, Jin-Woo;Cho, Kyung-Mo;Park, Se-Hee;Chang, Hoon-Sang
    • The Journal of the Korean dental association
    • /
    • v.52 no.12
    • /
    • pp.734-743
    • /
    • 2014
  • Objectives: By introduced reciprocation motion file in dentistry, dentists benefit simple canal shaping procedure and time-saving. But, reciprocation motion generates uncomfortable vibration to doctors and patients. Because there was no study about this consideration, this study compared vibration pattern and power generated from reciprocation motion motor and conventional rotary motor. Materials & Methods: One conventional rotary motor; X-Smart (Dentsply Maillefer, Ballaigues, Switzerland); and two reciprocating motors; WaveOne Motor (Dentsply Maillefer, Ballaigues, Switzerland) and X-SMART PLUS (Dentsply Maillefer, Ballaigues, Switzerland); were used in this study. Triaxial $ICP^{(R)}$ Accelerometer (Model 356A12, PCB piezotronics, New York, USA) was attached on motor's handpiece head, and was measured tri-axial vibratory acceleration with NI Sound and Vibration Assistant 2009 software (National Instruments, Texas, USA). Mean vibratory acceleration and maximum vibratory acceleration was measured on fixed position and handed position. The results of vibratory acceleration were statistically analyzed using ANOVA and multiple comparisons are made using Turkey's test at p<0.05 level. Results: Reciprocating motors showed higher mean vibratory acceleration and maximum vibratory acceleration than conventional rotary motor (p<0.05). Between reciprocating motors, X-SMART PLUS had lower mean vibratory acceleration and maximum vibratory acceleration than WaveOne Motor (p<0.05). Conclusion: Reciprocating motors generate more vibration than conventional rotary motor. Further study about effect of vibration to dentist and patient is needed. And it seems to be necessary to make a standard about vibration level in endodontic motors.

The Effect of Fabric Movement on Wrinkle Recovery in a Clothing Care System (의류관리기 내 직물거동이 구김 제거에 미치는 영향)

  • Yu, Dongjoo;Yoon, Juhee;Lee, Sang Wook;Yun, Changsang
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.2
    • /
    • pp.335-345
    • /
    • 2021
  • The purpose of this study was to examine the effect of fabric movement on wrinkle recovery in a clothing care system and to propose an algorithm to improve wrinkle removal performance by adjusting fabric movements. With an increase in the reciprocating speed of the movement system, the number and amplitude of curves on the fabric also increased. This allowed the fabric to be applied to a larger tension, resulting in better wrinkle removal performance at higher speeds. However, even at high reciprocating speeds, wrinkles could not be removed effectively because of nodes at a few specific locations. Based on the results of fabric movement and wrinkle recovery, a complex movement algorithm was proposed with a mixture of various reciprocation speeds. It showed a 41%p (24%→65%) improvement of wrinkle recovery when compared with the conventional algorithm that showed simple fabric movement at 180 rpm. This was because the positions of nodes and antinodes changed continuously and the force by the reciprocating motion could be applied evenly to the fabric.

The Kinematic Analysis of High-Speed Reciprocating Feeding Mechanism (고속왕복 이송 시스템의 운동해석에 관한 연구)

  • No, Chang-Su;Sin, Jung-Ho
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.99-104
    • /
    • 1988
  • The method of simulation for ballistic feeding mechanical system is presented. Taking photograph of roller drived by a force of explosion, searches the motion of roller. The algorithm that a motion of roller is converted into a motion of cam is presented. Using central difference method, the angular velocity and acceleration of cam is evaluated.

  • PDF

Analysis of the Dynamic Behavior and Lubrication Characteristics of a Small Reciprocating Compressor (소형 왕복동 압축기의 동적 거동 및 윤활특성 해석)

  • Kim, Tae-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1138-1145
    • /
    • 2003
  • In this paper, a study on the dynamic behavior and lubrication characteristics of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and oil films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and Gumbel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft. The results explored the effects of design parameters on the stability and lubrication characteristics of the compression mechanism.

Analysis of Oil Supply Characteristics for Reciprocating Compressor (왕복동 압축기 오일 급유 특성 분석)

  • Lee, Byeong-Yeong;Ko, Han-Seo;Ryu, Ki-O;Youn, Young;Park, Seong-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.545-546
    • /
    • 2006
  • A problem of oil supply for a reciprocating compressor is very significant for an evaluation of reliability. Since a rotational motion of a crank shaft for the reciprocating compressor with small capacity is used for a power source of oil supply, a centrifugal force of the rotational shaft provides a stroke of oil inside the shaft like a centrifugal pump. The pumped oil rises following an inner wall and provided to a bearing passed through an oil supply hole at the side of the shaft for lubrication of the bearing. In this study, the amount of oil supply has been investigated by a numerical analysis for various conditions such as a shape of a groove, rpm of the compressor, and a shape of a flow channel. Also, a method of increasing oil supply for a low rpm has been studied so that the function can be improved for a variable condition.

  • PDF

Prediction of the performance of a reciprocating compressor taking fluid-solid interaction into account (고체-유체의 상호작용을 고려한 왕복동 압축기의 성능예측)

  • Koh, J.C.;Joo, J.M.;Pak, C.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 1997
  • The reciprocating compressors are widely used in industrial fields for its simplicity in principle and high efficiency. But the design of it requires rigorous experiments due to its high dependence on many design parameters. In this work, a mathematical model is developed so that we can analyze the gas-solid interaction during the whole working processes of a reciprocating compressor. The governing equations, which represent the fluid-solid interaction, was derived from the unsteady Bernoulli's equation with the assumption of quasi-steady working process. The valve itself was assumed to be a one degree of freedom spring-mass-damper system. A simple thermodynamic relation, the ideal gas state equation, was used to give it an external force term assuming that the refrigerant behaves like an ideal gas. It was suggested to use a motor of higher driving frequency to enhance the performance of the reciprocating compressor without causing a faster failure of the valve.

  • PDF