• 제목/요약/키워드: reciprocating motion

검색결과 117건 처리시간 0.023초

리니어 왕복운동 제어시스템 구동용 가동코일형 리니어 액츄에이터의 설계제작 및 제어정수 도출 (Design and Extraction of Control Parameters of a Moving-Coil-Type Linear Actuator for Driving of Linear Reciprocating Motion Control Systems)

  • 장석명;정상섭;박희창;문석준;박찬일;정태영
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권5호
    • /
    • pp.241-248
    • /
    • 1999
  • Recently, many linear motion generators and motors are rapidly finding applications that ranges from short stroke linear motion vibrators, such as dynamic cone type loudspeakers to stirling engine driven linear reciprocating alternators, compressors, textile machines etc. The stroke-length may go up to 2m, and the maximum speed is in the range of 5 to 10m/s with oscillating frequency as high as 15 kHz. Therefore, the linear oscillating actuators(LOAs) may be considered as variable speed drivers of precise controller with stoke-length and reversal periods during the reciprocating motion. In this paper, the design, fabrication, experiments, and extraction of control parameters of a moving coil type LOA for driving of linear reciprocating motion control systems, are treated. The actuator consists of the NdFeB permanent magnets with high specific energy as the stator produced magnetic field, a coil-wrapped nonmagnetic hollow rectangular bobbin structure, and an iron core as a pathway for magnetic flux. Actually, the design is accomplished by using FEM analysis for the basic configuration of a magnetic circuit, and characteristic equations for coil design. In order to apply as the drivers of a linear motion reciprocating control system, the control parameters and circuit parameters, such as input voltage-stoke, exciting frequency-stoke, coil inductance and so on, are extracted from the analysis and experiments on concerning a fabricating LOA.

  • PDF

Dynamic Analysis of the Piston Slap Motion in Reciprocating Compressors

  • Kim, Tae-Jong
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.411-412
    • /
    • 2002
  • Piston-cylinder system are widely used in power engineering applications. In reciprocating refrigeration compressors, where extremely low friction losses are required, ringless pistons are being used to diminish the friction between piston rings and cylinder wall. Since the ringless piston has the freedom of lateral motion there is a potential danger that it will occasionally hit the cylinder wall while moving up and down along it's axis. A good design must therefore provide a smooth and stable reciprocating motion of the piston and ensure that the fluid film separating the piston from the cylinder wall is maintained all times. And the compromise between refrigerant gas leakage through the piston-cylinder clearance and the friction losses is required utilizing a dynamic analysis of the secondary motion for the high efficiency compressor. To this end, the computer program is developed for calculating the entire piston trajectory and the lubrication characteristics as functions of crank angle under compressor running conditions. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction losses.

  • PDF

유압 피스톤 펌프의 피스톤과 실린더 사이의 윤활해석 (제2보 : 피스톤의 왕복운동에 의한 영향) (A Lubrication Analysis between the Piston and Cylinder in Hydraulic Piston Pumps Part II : The Effect of Piston Reciprocating Motion)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.435-440
    • /
    • 2001
  • A numerical analysis between the piston and cylinder in hydraulic piston pumps under reciprocating motion is presented. A finite difference method and the Newton-Raphson method are used simultaneously to solve the Reynolds equation in the clearance and the equation of motion for the piston. The tapered piston showed stable behaviors regardless of their initial eccentric positions in the clearance, and the reciprocating speed affect highly on the piston end trajectories. Therefore, the numerical methods and results of present study can be used in the lubrication study of other piston-cylinder type fluid machineries.

사판식 유압 피스톤 펌프의 윤활해석 : 피스톤 왕복운동의 영향 (A Lubrication Analysis in Swash Plate Type Hydraulic Piston Pump : Effect of Piston Reciprocating Motion)

  • 박태조;구칠효
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.129-135
    • /
    • 1999
  • A numerical analysis between the piston and cylinder in swash plate type hydraulic piston pumps under reciprocating motion is presented. A finite difference method and the Newton-Raphson method are used simultaneously to solve the Reynolds equation In the clearance and the equation of motion for the piston. The tapered piston showed stable behaviors regardless of their initial eccentric conditions in the clearance and the reciprocating speed affect highly on the piston end trajectories. Therefore, the results of present study can be used other types fluid machineries.

  • PDF

거친사각채널에서 왕복운동이 열전달에 미치는 효과 (The Effect of Reciprocating Motion on Heat Transfer in the Roughened Rectangular Channel)

  • 안수환;손강필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.646-652
    • /
    • 2002
  • The influence of reciprocating frequency and radius on heat transfer in the roughened rectangular channel is experimentally investigated. The aspect ratio (width/height) of the duct is 2.33 and the rib height is one fifteenth of the duct height. And the ratio of rib-to-rib distance to rib height is 10. The discrete ribs were periodically attached to the button wall of the duct with a parallel orientation. The parametric test matrix involves Reynolds number, reciprocating, and reciprocating radius, in the ranges, 1,000∼6,000, 1.7∼2.5 HB and 7∼15cm, respectively. The combined effects of reciprocating frequency and reciprocating radius have considerable influence on the heat transfer due to the modified vortex flow structure.

왕복운동을하는 채널에서 표면거칠기가 열전달에 미치는 영향 (The Effects of Surface Roughness on Heat Transfer in The Reciprocating Channel)

  • 안수환;손강필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.333-336
    • /
    • 2002
  • This paper describes a detailed experimental Investigation of heat transfer In a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively, in the ranges, $1,000\;{\~}\;6,000,\;1.7\;{\~}\;2.5\;Hz,\;and\;7\;{\~}\;15cm$ with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (a), Case (d), Case (c), and Case (b)

  • PDF

여러 근관치료용 무선 핸드피스의 진동양상 비교 (Comparison vibration characteristics of several wireless endodontic handpieces)

  • 이보경;이윤;박세희;조경모;김진우
    • 구강회복응용과학지
    • /
    • 제38권2호
    • /
    • pp.81-89
    • /
    • 2022
  • 목적: 여러 근관치료용 무선 핸드피스에서 발생되는 진동의 크기와 양상을 비교해 보고자 한다. 연구 재료 및 방법: 클램프로 고정시킨 5개의 근관치료용 무선 핸드피스(X Smart IQ, E Connect S, Endo A Class, ENDOIT, TRAUS ENDO)의 헤드부분에 가속도계를 이용하여 회전운동과 왕복운동방식으로 동작할 때 핸드피스 자체에서 발생하는 진동가속도를 측정하였다. 결과: 모든 근관치료용 무선 핸드피스에서 회전운동보다 왕복운동에서의 평균진동가속도가 유의하게 높게 나타났다(P < 0.001). 회전운동에서는 급격한 진동의 크기 변화 없이 일정한 진폭의 반복적인 진동그래프가 얻어졌으며, 평균진동 가속도 값은 X Smart IQ, Endo A Class, ENDOIT, E Connect S, TRAUS ENDO 순이었고(P < 0.001), X Smart IQ와 Endo A Class 사이에는 통계적으로 유의한 차이가 없었다. 왕복운동에서는 한 주기 안에 특정 지점에서 큰 진폭의 피크가 나타나는 양상의 진동그래프가 얻어졌으며, 평균진동가속도 값은 X Smart IQ, E Connect S, Endo A class, ENDOIT, TRAUS ENDO 순이었다(P < 0.001). 결론: 무선 근관치료용 핸드피스 종류에 관계없이 회전운동보다 왕복운동에서 더 큰 진동이 발생하였다. 왕복운동에서는 모든 핸드피스에서 진동의 차이가 있었다(P < 0.001).

전동형 진동식 압축기 토출밸브의 동적해석 (Dynamic Analysis of a Discharge Valve for Electrodynamic Oscillating Compressor)

  • 김형진;박윤식
    • 소음진동
    • /
    • 제10권4호
    • /
    • pp.615-622
    • /
    • 2000
  • Discharge valve mechanism for an electrodynamic-oscillating compressor is different from that of a conventional reciprocating compressor. It has a larger discharge port area, heavier valve mass and stiffer valve spring comparing with the reciprocating one. Since the motion of piston is not kinematically restricted as in conventional reciprocating compressors, the stroke of the piston can change sensitively with supplied boltage and load. Thus piston can impact with discharge valve occasionally. This work deals on dynamic analysis of discharge valve considering all of those different characteristics. Impact is considered by a spring-mass model, and the pressure fluctuation at the both sides of the valve is also included considering the discharge port area and valve spring preload. It is assumed that piston moves in the region of between top and bottom dead center not by calculating piston motion from an electrodynamic equation but by getting values through experiment. Discharge pressure fluctuation is calculated using Helmholtz modeling. Finally, dynamic model for a discharge valve is constructed. In order to validate the model analysis results, the valve motion is experimentally measured and compared with analysis.

  • PDF

접촉 형상과 기구학적 운동형태가 초고분자량 폴리에틸렌의 마멸에 미치는 영향 (Effects of Kinematic Motions and Contact Configurations on the Wear of UHMWPE)

  • 이권용
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.143-146
    • /
    • 2002
  • The effects of contact configuration and kinematic motion on the wear of ultrahigh molecular weight polyethylene (UHMWPE) were investigated. Two different contact configurations were adopted for wear testing under the two different kinematic motions with un-irradiated UHMWPE specimens. Wear of UHMWPE pins against the linear reciprocating stainless steel disks was 8% higher than that against the uni-directional repeat pass rotating disks. Wear of UHMWPE disks moving in the linear reciprocating motion against stainless steel ball was 37% higher than that moving in the uni-directional repeat pass rotating motion. The results in this study show that the contact configuration and kinematic motion of sliding definitely affect the wear of UHMWPE through the differences in the contact stress states of UHMWPE.

접촉 형상과 기구학적 운동형태가 초고분자량 폴리에틸렌의 마멸에 미치는 영향 (Effects of Kinematic Motions and Contact configurations on the Wear of UHMWPE)

  • 이권용
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제33회 춘계학술대회 개최
    • /
    • pp.100-104
    • /
    • 2001
  • The effects of contact configuration and kinematic motion on the wear of ultrahigh molecular weight polyethylene (UHMWPE) were investigated. Two different contact configurations were adopted for wear testing under the two different kinematic motions with un-irradiated UHMWPE specimens. Wear of UHMWPE pins against the linear reciprocating stainless steel disks was 8% higher than that against the uni-directional repeat pass rotating disks. Wear of UHMWPE disks moving in the linear reciprocating motion against stainless steel ball was 37% higher than that moving in the uni-directional repeat pass rotating motion. The results in this study show that the contact configuration and kinematic motion of sliding definitely affect the wear of UHMWPE through the differences in the contact stress states of UHMWPE.

  • PDF