• Title/Summary/Keyword: recharging

Search Result 95, Processing Time 0.029 seconds

Image-based Visual Servoing for Automatic Recharging of Mobile Robot (이동로봇의 자동충전을 위한 영상기반 비쥬얼 서보잉 방법)

  • Song, Ho-Bum;Cho, Jae-Seung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.664-670
    • /
    • 2007
  • This study deals with image-based visual servoing for automatic recharging of mobile robot. Because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using cameras, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is image-based visual servoing. Recently, image based visual servoing is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. In case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual servoing method that can reduce the curved trajectory of mobile robot in the cartesian space.

TreatmentWD Pulse Application for Transcranial Magnetic Stimulation

  • Ha, Dong-Ho;Kim, Jun-Il;Lee, Sun-Min;Bo, Gak-Hwang;Kim, Whi-Young;Choi, Sun-Seob
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • The transcranial magnetic stimulation recharges the energy storing condenser, and sends the stored energy in the condenser to the pulse shaping circuit, which then delivers it to the stimulating coil. The previous types of transcranial magnetic stimulation required a booster transformer, secondary rectifier for high voltages and a condenser for smooth type. The energy storing condenser is recharged by switching the high-voltage direct current power. Loss occurs due to the resistance in the recharging circuit, and the single-pulse output energy in the transcranial magnetic stimulation can be changed because the recharging voltage cannot be adjusted. In this study a booster transformer, which decreases the volume and weight, was not used. Instead, a current resonance inverter was applied to cut down the switching loss. A transcranial magnetic stimulation, which can simultaneously alter the recharging voltage and pulse repeats, was used to examine the output characteristics.

A Study on Mobile Robot Auto Recharging System Based on Wireless Power Transmission and Visual Information (영상정보를 이용한 이동로봇의 무선 전력전송 자동충전에 관한 연구)

  • Kim, Jae-Oh;Lee, Kyung-Jung;Ahn, Hyun-Sik;Moon, Chan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.35-40
    • /
    • 2011
  • In this paper, an auto recharging system for a mobile robot based on the wireless power transmission and visual information is proposed. The existing recharging systems for mobile robot use mechanical contact while wireless power transmission transfers energy by electromagnetic induction method without contacts. For efficiency of charging, alignment of coils is important. In order to solve this problem, with the visual image, ellipticity of coil circle is recognized to control the pose of mobile robot.

Effect of the climate change on groundwater recharging in Bangga watershed, Central Sulawesi, Indonesia

  • Sutapa, I Wayan
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • This study was conducted to determine the effect of the climate change to the level of groundwater recharging. This research was conducted on the watershed of Bangga by using the Soil Water Balance of MockWyn-UB model. Input data compose of evapotranspiration, monthly rainfall, watershed area, canopy interception, heavy rain factor and the influence of climate change factors (rainfall and temperature). The conclusion of this study indicates that there is a decreasing trend in annual groundwater recharge observed from 1995 to 2011. The amount of groundwater recharge varied linearly with monthly rainfall and between 3% to 25% of the rainfall. This result implies that rain contributed more than groundwater recharge to runoff and evaporation and the groundwater recharge and Bangga River discharge depends largely on the rainfall. In order to increase the groundwater recharge in the study area, reforestation programmes should be intensified.

The Method of precise landing operation for UAV's recharging system by using QR code (UAV의 근거리 무선충전을 위한 QR 코드를 활용한 정밀한 착륙 방안)

  • Kim, Byoung-Kug;Hong, Sung-Hwa;Kang, Jiheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.519-521
    • /
    • 2022
  • As appearance of diverse electric power supplies and fuel cells have been emerging, UAVs have capacity to prolong their flight missions. Nowadays, the rotary based UAVs that are commonly distributed on the open market, adapt rechargeable batteries and have around 50 centimeters in width and generally within 30 minutes in hovering flight capacities. UAV's flight time highly depends on the capacity and the weight of its batteries. To cope with the flight time, recharging methods are also being researched. their researches are mainly divided into coupled and decoupled in manner. In this article, we propose the method to refine the position more effectivly and precisely adapting QR Code and 3-D position estimation so that UAVs enable to land on the recharging system successfully.

  • PDF

A Study on the Operation Plan of Powered Wheelchair and Electric Scooter Charging Station (전동휠체어 및 전동스쿠터 충전소 운영 방안 연구)

  • Kim, Seung Eon;Kim, Kyung Sik;Kang, Jung Bae;Song, Byung Seop
    • 재활복지
    • /
    • v.21 no.2
    • /
    • pp.191-216
    • /
    • 2017
  • Recently, according to demands for a mobility right of people with disabilities, the use of powered mobility device has been rapidly increased and recharging facilities have been set up in many places of country. But the standards for the installation and management of the facilities are not clear and many problems are brought up in operating the facilities. Therefore, regulations and realities of recharging facilities were investigated and the user survey was progressed. On the basis of the research results, a rational and efficient installation and management plan was drawn up. The plan suggests that the recharging facilities should be installed in a building managed by government and many kinds of public building like library, theater, sports facilities, department store, museum, etc. Further, the recharging facilities should secure independent place which have specified area for protecting of privacy and provide some amenities for people with disabilities to enhance the conveniences.

Development of Multi-Material DLP 3D Printer (다중재료 DLP 3차원 프린터의 개발)

  • Park, Se-Won;Jung, Min-Woo;Son, Yong-Un;Kang, Tae-Young;Lee, Chibum
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.100-107
    • /
    • 2017
  • 3D printing is a technology that converts a computer-generated 3D model into a real object with additive manufacturing technology. A majority of 3D printing technologies uses one material, and this is considered a limitation. In this study, we developed a multi-material 3D printer by adopting dual resin vat and cleaning system with DLP (Digital Light Processing) 3D printing technology. The developed multi-material DLP 3D printer is composed of a manufacturing system, cleaning system, transporting system, and automatic resin recharging system. Various 3D structures were 3D printed with two materials, thus demonstrating the potential. Printing performance of the multi-material DLP 3D printer was studied by performing a comparative surface roughness test and tension test on specimens composed of one material as well as those composed of two materials.

Artifical Groundwater Recharge Using Underground Piping Method

  • Ahn, Sang-Jin;Lee, Jong-Hyong
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.11-29
    • /
    • 1992
  • Recently, rapid industrialization, urbanization and higher living standards accelerate to increase groundwater consumption resulting in continuously dropping groundwater elevations. To maintain enough groundwater volume without dropping groundwater elevations, the proper groundwater rechatge is necessary. The groundwater rechatge can be classified into two categories which are natural rechatge and artiticial rechatge. Even though the natural rechatge through by dired infiltration from the rainfall is desirable, the artificial groundwater rechatge is necessaty when the increment of groundwater consumption exceeds natural recharge rate. Well method and scattering method are utilized as artificial rechatging method, a severe disadvantage, which is the reduction of the void of soil surface, is indicated in the well method. Recently, the underground piping method, which is a scattering method, is receiving increasing attention as a proper recharging method. The method is indirectly to supply water to the underground using an underground piping system. Therefore, the void of soil surface is not severely reduced and better infiltration rate can be achieved. In this paper, the artificial groundwater rechatge using underground piping method is investigated through experiments and numerical analysis. The influence of the groundwater by underground piping method is evaluated through comparing recharging heights. Good agreements between experiments and numerical analysis are obtained and the artificial groundwater recharge by underground piping method is well tested and verified.

  • PDF

Recharge mechanism using electromagnetic ground conductivity survey and tritium concentration analyses of groundwater in salt affected area, Northeast Thailand

  • Imaizumi Masayuki;Sukchan Somsaku;Ishida Satoshi;Tsuchihara Takeo;Ohonishi Ryouichi
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.344-351
    • /
    • 2003
  • Hydrogeological survey and geochemical analysis were carried out in Phra Yun area, Northeast Thailand, which is a typical salt-affected area for an understanding of hydrogeological groundwater behaviours. Geological survey reveals the presence of G1 and F1 faults. Electromagnetic ground conductivity prospecting shows that the high conductivity zones of 15 mS/cm or more are distributed at underground of the G1 and F1 faults where saline groundwater is discharged. The distribution patterns of tritium concentration show that high tritium concentration zones of groundwater were recharged from pond and river. On the assumption that the annual average tritium concentration of precipitation in Northeast Thailand is same as tritium concentration of precipitation in Tokyo and groundwater flows as piston flow, the age of recharging precipitation of groundwater with 15 TU in 1997 could be estimated at 1967-1970 years. The velocity of groundwater flow was calculated to be $5.3{\times}10^{-7}\;m/s\;and\;2.1{\times}x10^{-6}\;m/s$ respectively from a duration time of 30 years and distance of groundwater flow 500m -2000m from the pond and river to the investigation wells. Because the estimated values of velocity of groundwater flow are compatible with the hydraulic conductivities, it is considered that 30 years is a reasonable period for recharging groundwater.

  • PDF