• 제목/요약/키워드: rechargeable batteries

검색결과 199건 처리시간 0.025초

적외선 센서와 무선통신을 이용한 열차접근경보시스템 개발 (Railway Access Alarm System Using Infrared Distance Sensor and Wireless Communication)

  • 황윤태;황성태;이윤성;김도근;이태규
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.303-311
    • /
    • 2017
  • 국내의 철도작업자의 안전사고는 열차 운행 기관사의 부주의, 선로변 작업자의 감각차단 현상 및 신호수의 실수 등으로 인해 추돌사고가 주요 원인으로 매년 꾸준히 발생하고 있으며 이러한 안전사고를 예방할 수 있는 대책 마련이 시급하다. 따라서 철도 작업 시, 선로변 작업자가 청각과 시각적으로 열차접근을 검지하여 열차 접근으로부터 대피할수 있는열차접근경보시스템을 개발하였다. 이 시스템은 철도 작업장에서 1.5km 이상 전후방 선로에 열차자동겸지장치를 설치하여 자동으로 열차 진입을 검지하도록 하고 작업장에 설치된 실시간 경보장치에 유무선으로 검지 신호를 전달하도록 하며, 검지신호를 수신한 실시간 경보장치는 LED 경보등 및 사이렌 등으로 작업자에게 경보신호를 주는 방식으로 작동된다. 이전의 시스템에 비해 원거리에 있는 열차접근의 검지가 가능하고 주로 무선통신방식을 채택하여 통신배선작업이 불필요하며 충전식 배터리와 태양광 충전장치를 통해 외부 전원 공급이 어려운 현장의 상황에 적합한 이점이 있다. 시스템의 현장검증을 통하여 열차자동검지장치와 실시간 경보장치의 성능평가를 실시하였고 100%구동을 확인하여 신뢰성을 검증하였다.

유기용매 전해조를 이용한 리튬이차박막전지용 Sn 음극의 제조 (Preparation and Characterization of a Sn-Anode Fabricated by Organic-Electroplating for Rechargeable Thin-Film Batteries)

  • 김동훈;도칠훈;이정훈;이덕준;하경화;진봉수;김현수;문성인;황영기
    • 전기화학회지
    • /
    • 제11권4호
    • /
    • pp.284-288
    • /
    • 2008
  • 박막 리튬이차전지의 고용량 음극을 개발하기 위하여, Sn(II) 아세테이트를 포함한 유기전해조 도금법을 이용하여 Sn 박막전극을 제조하였다. $Li^+$$Sn^{2+}$를 포함한 전해조에 대한 순환전위전류시험 결과 3종류의 환원 반응이 나타났으며, $2.0{\sim}2.5\;V$ 영역이 Ni 집전체 표면에 대한 Sn의 석출 반응에 해당한다. 수계전해액에 대한 $Sn^{2+}$의 표준환원전위는 2.91 V vs. $Li^+/Li^{\circ}$ 인데 반해 유기전해조에서는 보다 낮은 전위에서 환원반응이 일어났다. 이는 유기전해질의 고저항과 $Sn^{2+}$의 낮은 농도에 기인한 과전위의 결과로 생각된다. 제조한 전극의 물리적 특성 및 전기화학적 특성을 연구하였다. 석출한 Sn 전극을 $150^{\circ}C$로 열처리하여 보다 높은 결정성을 얻을 수 있었고, 이를 Sn/Li 전지로 구성하여 전기화학적 실험을 한 결과 0.25 V와 0.75 V에서 각각 합금화-탈합금화 과정을 확인 할 수 있었다. 제조한 전극의 두께를 전기량을 통하여 계산한 바 $7.35{\mu}m$였으며, 가역용량은 $400{\mu}Ah/cm^2$을 얻었다.

TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성 (Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material)

  • 최병현;지미정;권용진;김은경;남산
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

졸-겔법에 의해 제조된 정극 활물질 LiNi0.8Co0.2-xMxO2[M=Al]의 전기화학적 특성 (A Study on the Electrochemical Properties of LiNi0.8Co0.2-xMxO2[M=Al] Cathode Materials Prepared by Sol-Gel Method)

  • 한창주;조원일;조병원;윤경석;장호
    • 전기화학회지
    • /
    • 제6권4호
    • /
    • pp.266-270
    • /
    • 2003
  • 우수한 전기화학적 특성을 갖는 $LiN_{0.8}Co_{0.2}O_2$ 정극 활물질을 평균 $1{\mu}m$ 이하의 균일한 입자 분포를 얻을 수 있는 액상 반응법의 하나인 졸겔법을 이용하여 제조하였다. 제조된 $LiN_{0.8}Co_{0.2}O_2$를 X선 회절과 TEM(transmission electron microscopy)분석을 통하여 미세구조를 분석하였다. 충방전 실험전과 실험후의 미세구조의 변화에 중점을 주어 실험하였으며, 그 결과 졸겔법으로 제조된$LiN_{0.8}Co_{0.2}O_2$ 정극 활물질은 높은 가역 용량을 가지며 뛰어난 싸이클 특성을 가지고 있다 이는 졸겔법으로 제소함으로 인하여 Ni과 Co양이온의 균일한 화학조성을 가지고 있기 때문이라 생각된다. 특히 $LiCoO_2$에서 관찰되었던 cubic spinel disordering과 심각한 구조적 결함이 관찰되지 않았다. 또한 Al 치환으로 인하여 싸이클 특성을 좋아졌지만 용량은 감소하였다.

PECVD법으로 구리 막 위에 증착된 실리콘 박막의 이차전지 음전극으로서의 전기화학적 특성 (Electrochemical Characteristics of the Silicon Thin Films on Copper Foil Prepared by PECVD for the Negative Electrodes for Lithium ion Rechargeable Battery)

  • 심흥택;전법주;변동진;이중기
    • 전기화학회지
    • /
    • 제7권4호
    • /
    • pp.173-178
    • /
    • 2004
  • 플라즈마 화학 기상 증착법으로 구리 막$(foil,\;35{\mu}m)$표면 위에 $SiH_4$와 Ar혼합가스를 공급하여 실리콘 박막을 증착 한 후 리튬 이온전지의 음극으로 활용하였다. 증착 온도에 따라 비정질 실리콘 박막과 copper silicide박막 형태의 다른 두 종류의 실리콘 박막 구조가 형성되는 것이 관찰되었다. $200^{\circ}C$ 이하의 온도에서는 비정질 실리콘 박막이 증착되었고, $400^{\circ}C$ 이상의 온도에서는 실리콘 라디칼과 확산된 구리 이온의 반응에 의한 그래뉼러 형태의 copper silicide박막이 형성되었다. 비정질 실리콘 박막은 copper silicide박막 보다 높은 용량을 나타냈으나 충·방전 반응에 의한 급격한 용량 손실을 나타냈다. 이것은 비정질 실리콘 박막의 부피 팽창에 의한 것으로 추정된다. 그러나 copper silicide 박막을 음극으로 사용했을 때는 copper silicide를 형성한 실리콘과 구리의 화학결합이 막 구조의 부피변화를 감소 시켜줄 뿐 아니라 낮은 전기 저항을 갖기 때문에 싸이클 특성이 향상되었다.

Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조 (Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate)

  • 윤미혜;권소영;정유영;조두현;구자경
    • 멤브레인
    • /
    • 제20권3호
    • /
    • pp.259-266
    • /
    • 2010
  • 다공성 Poly(propylene) 분리막의 지지 하에 전해질 용액 (EC/DEC 1 : 1 혼합물 내의 $LiPF_6$ 1 M 용액) 내에서 DEGDMA [Di(ethylene glycol) dimethacrylate]의 $70^{\circ}C$ 열중합을 통하여 겔 고분자 전해질(GPE)막이 합성 되었다. 합성된 겔 고분자 전해질막의 이온전도도 및 전기화학적 안정성은 AC 임피던스법 및 CV (cyclic voltametry)법에 의하여 측정 평가하였다. 겔 고분자를 전해질로, 그리고 양극 및 음극으로는 각각 $LiMi_{0.8}Co_{0.2}O_2$ 및 graphite로 이용하여 리튬이온전지(LIB)도 제작하였다. 열중합을 통하여 리튬 이온전지에 적합한 이온전도도($10^{-3}\;S/cm$ 이상) 및 전기화학적 안정성을 보이면서 자체적인 성상을 유지하는 겔 고분자 전해질막을 얻을 수 있었다. 단량체 함량 5%의 전구체로 제작한 겔 고분자 전지는 단량체 함량이 7.0% 및 10.0%인 경우에 비하여 우수한 고율 및 충-방전 효율을 보였다.

Fe3(PO4)2 생성에 미치는 침전제와 첨가량의 영향 (Effect of Precipitator and Quantity on the Formation of Fe3(PO4)2)

  • 안석진;이선영;오경환;서동수
    • 한국재료학회지
    • /
    • 제21권11호
    • /
    • pp.587-591
    • /
    • 2011
  • The effect of the precipitator (NaOH, $NH_4OH$) and the amount of the precipitator (150, 200, 250, 300 ml) on the formation of $Fe_3(PO_4)_2$, which is the precursor used for cathode material $LiFePO_4$ in Li-ion rechargeable batteries was investigated by the co-precipitation method. A pure precursor of olivine $LiFePO_4$ was successfully prepared with coprecipitation from an aqueous solution containing trivalent iron ions. The acid solution was prepared by mixing 150 ml $FeSO_4$(1M) and 100 ml $H_3PO_4$(1M). The concentration of the NaOH and $NH_4OH$ solution was 1 M. The reaction temperature (25$^{\circ}C$) and reaction time (30 min) were fixed. Nitrogen gas (500 ml/min) was flowed during the reaction to prevent oxidation of $Fe^{2+}$. Single phase $Fe_3(PO_4)_2$ was formed when 150, 200, 250 and 300 ml NaOH solutions were added and 150, 200 ml $NH_4OH$ solutions were added. However, $Fe_3(PO_4)_2$ and $NH_4FePO_4$ were formed when 250 and 300 ml $NH_4OH$ was added. The morphology of the $Fe_3(PO_4)_2$ changed according to the pH. Plate-like lenticular shaped $Fe_3(PO_4)_2$ formed in the acidic solution below pH 5 and plate-like rhombus shaped $Fe_3(PO_4)_2$ formed around pH 9. For the $NH_4OH$, the pH value after 30 min reaction was higher with the same amount of additions of NaOH and $NH_4OH$. It is believed that the formation mechanism of $Fe_3(PO_4)_2$ is quite different between NaOH and $NH_4OH$. Further investigation on this mechanism is needed. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the pH value was measured by pH-Meter.

폐리튬이차전지에서 회수한 탄산리튬으로부터 2-step 침전공정을 이용한 고순도 수산화리튬 분말 제조 연구 (Study on Preparation of High Purity Lithium Hydroxide Powder with 2-step Precipitation Process Using Lithium Carbonate Recovered from Waste LIB Battery)

  • 주소영;강유빈;심현우;변석현;김용환;이찬기;김대근
    • 자원리싸이클링
    • /
    • 제28권5호
    • /
    • pp.60-67
    • /
    • 2019
  • 금속 폐기물로부터의 유가금속 회수는 관련 원료의 수입 혹은 안정적 원료 수급을 위해서 매우 중요하다. 특히 폐리튬이차전지(LIBs)로부터 회수가 가능한 금속(Li, Co, Ni, Mn 등)의 재사용뿐만 아니라 폐리튬이차전지의 재활용 연구가 필수적이다. 폐리튬이차전지에서 회수된 수산화리튬($LiOH{\cdot}xH_2O$)은 촉매, 이산화탄소 흡수제 및 양극재의 전구체로 재사용이 가능하다. 본 연구에서는 폐리튬이차전지로부터 회수된 탄산리튬 전구체를 사용하였으며, 침전공정을 이용한 선택적인 리튬 분리를 통해 고순도 수산화리튬 분말의 제조 및 최적화 연구를 진행하였다. 수산화리튬 제조 조건으로는 교반을 기반으로 반응온도 $90^{\circ}C$, 반응시간 3 시간, 탄산리튬과 수산화칼슘의 비율 1:1의 조건에서 수행하였으며, 순도 향상을 위해 2-step 수산화리튬 제조 공정을 추가적으로 진행하여 최종적으로 고순도의 수산화리튬 제일수화물($LiOH{\cdot}xH_2O$)을 제조하였다.

3차원 구조 모델링을 이용한 활물질 입자 크기 및 전극 밀도에 따른 복합 전극 내 물리적 특성 분석 (Physical Property Analysis of Composite Electrodes with Different Active Material Sizes and Densities using 3D Structural Modeling)

  • 양승원;박주남;변승우;김나연;유명현;이용민
    • 전기화학회지
    • /
    • 제23권2호
    • /
    • pp.39-46
    • /
    • 2020
  • 이차전지용 전극은 일반적으로 전극 활물질, 도전재, 그리고 고분자 바인더가 혼합된 복합 전극의 형태를 갖는다. 따라서, 크기나 형태가 다른 각 성분의 조성 및 전극 내 분포에 따라 전극의 전기화학적 활성이 달라지게 되나, 이를 효율적으로 예측하고 설계하는 3차원 전극 구조 모델링 기술은 아직 활발히 연구되고 있지 못하다. 따라서, 본 논문에서는 3차원 구조 모델링 툴인 GeoDict를 이용하여, LiCoO2 전극 활물질 입자 크기와 복합 전극 밀도에 따른 입자 간 접촉 면적과 전기전도특성을 예측한 결과를 제시한다. 전극의 조성과 로딩은 LiCoO2 : Super P Li® : Polyvinylidene Fluoride (PVdF) = 93 : 3 : 4 (wt%)과 13 mg cm-2로 고정하고, LiCoO2 평균 입경은 10 ㎛과 20 ㎛로 전극 밀도는 2.8 g cm-3, 3.0 g cm-3, 3.2 g cm-3, 3.5 g cm-3, 4.0 g cm-3로 제어하여 가상의 3차원 전극 구조를 만들었다. 이 구조를 활용하여 LiCoO2 입경 증가에 따른 입자 간 접촉 면적 감소와 전기전도특성 증가 경향성이 정량화되었다. 또한, 전극 밀도가 증가함에 따라 입자 간 접촉 면적 및 전기전도특성 향상도 수치화 된 값으로 예상될 수 있다. 따라서, 본 논문에서는 3차원 전극 구조 분석 기법을 이용하면, 더 효율적인 복합 전극 설계가 가능함을 제시한다.