• Title/Summary/Keyword: receptor I

Search Result 1,175, Processing Time 0.025 seconds

Characteristics of Purinergic Receptor Expressed in Human Retinoblastoma Cells

  • Kim, Dae-Ran;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.13 no.4
    • /
    • pp.333-339
    • /
    • 2007
  • Recently, much attention has been paid to human retinoblastoma since it provide a good model system for studying mechanisms underlying cell growth, differentiation, proliferation, and apoptosis, and for developing cancer therapy. However, until now it is unclear whether purinergic receptors are involved in the calcium mobilization in the retinoblastoma cells. In this regard, we measured possible purinergic signaling in WERI-Rb-1 cells using $Ca^{2+}$ imaging technique and RT-PCR method. ATP-induced $[Ca^{2+}]_i$ transients was maintained to about $90.7{\pm}1.0%$ of the control (n=48) even in the absence of extracellular calcium. The ATP-induced intracellular calcium response was only attained to $10.4{\pm}1.8%$ (n=55) of peak amplitude of the control after preincubation of 1 ${\mu}MU-73122$, a PLC inhibitor, but it was not affected by 1 ${\mu}MU-73343$, a inactive form of U-73122. And also ATP-induced $[Ca^{2+}]_i$ rise was almost attenuated by 20 ${\mu}M$ 2-APB, a putative $IP_3$ receptor inhibitor. Two subtypes of $IP_3$ receptor $(IP_{3-1}R,\;IP_{3-2}R)$ were identified by a RT-PCR method. These findings suggest that purinergic stimuli can cause calcium mobilization via $PLC-IP_3$ pathway after the activation of P2Y receptors in the retinoblastoma cells, which may play important roles in cell proliferation, differentiation, growth, and cell death.

  • PDF

Effects of KATP Channel Blocker, cAMP and cGMP on the Cardiovascular Response of Adenosine A1 Agonist in the Spinal Cord of the Rats

  • Shin In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • This study was performed to investigate the influence of the spinal adenosine $A_1$ receptors on the central regulation of blood pressure (BP) and heart rate (HR), and to define whether its mechanism is mediated by cyclic AMP (cAMP), cyclic GMP (cGMP) or potassium channel. Intrathecal (i.t.) administration of drugs at the thoracic level were performed in anesthetized, artificially ventilated male Sprague-Dawley rats. I.t. injection of adenosine $A_1$ receptor agonist, $N^6$-cyclohexyladenosine (CHA; 1, 5 and 10 nmol) produced dose dependent decrease of BP and HR and it was attenuated by pretreatment of 50 nmol of 8-cyclopentyl-1,3-dimethylxanthine, a specific adenosine $A_1$ receptor antagonist. Pretreatment with a cAMP analogue, 8-bromo-cAMP, also attenuated the depressor and bradycardiac effects of CHA (10 nmol), but not with cGMP analogue, 8-bromo-cGMP. Pretreatment with a ATP-sensitive potassium channel blocker, glipizide (20 nmol) also attenuated the depressor and bradycardiac effects of CHA (10 nmol). These results suggest that adenosine $A_1$ receptor in the spinal cord plays an inhibitory role in the central cardiovascular regulation and that this depressor and bradycardiac actions are mediated by cAMP and potassium channel.

Responsiveness of Dendrites to the Glutamate Applied Focally with Pressure Ejector and Iontophoresis into Hippocampal Slices

  • Kim, Jin-Hyuk;Shin, Hong-Kee;Chang, Hyun-Ju;Kim, Hye-Young
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.457-466
    • /
    • 2001
  • Glutamate is the most common excitatory amino acid in the brain. Responsiveness of dendrites to the glutamate greatly varies depending on the application sites. Especially, a point of the maximal response to the glutamate of the dendrite is called as 'hot spot'. In our experiment, the responsiveness of the hot spot to the glutamate was investigated in the CA1 pyramidal neuron of the rat hippocampal slice. CNQX, the antagonist of AMPA receptor, blocked 95% of membrane current to the glutamate focal application $(I_{gl}).$ Train ejection of glutamate on one point of the dendrite increased or decreased the amplitude of $I_{gl}$ with the pattern of train, and the changes were maintained at least for 30 min. In some cases, glutamate train ejection also induced calcium dependent action potentials. To evoke long-term change of synaptic plasticity, we adopted ${\theta}-burst$ in the glutamate train ejection. The ${\theta}-burst$ decreased the amplitude of glutamate response by 60%. However, after ${\theta}-burst$ glutamate train ejection, the calcium dependent action potential appeared. These results indicated that the focal application of glutamate on the neuronal dendrite induced response similar to the synaptic transmission and the trains of glutamate ejection modulated the change of AMPA receptor.

  • PDF

CELLULAR AND MOLECULAR CHARACTERIZATION OF ADENOID CYSTIC CARCINOMA OF THE SALIVARY GLANDS (침샘 선양낭성암종의 세포학적, 분자생물학적 특성에 관한 연구)

  • Park, Young-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.2
    • /
    • pp.110-122
    • /
    • 2005
  • Adenoid cystic carcinoma (ACC) of salivary glands has a protracted clinical course with perineural invasion, delayed onset of hematogenous metastasis, and poor responses to classical cytotoxic chemotherapic agents. Most deaths from salivary ACC are caused by lung metastases that are resistant to conventional therapy. Therefore, knowledge of cellular properties and tumor-host interactions that influence the dissemination of metastatic cells is important for the design of more effective therapy of salivary cancer. I determined in vitro expression of epidermal growth factor receptor (EGFR) and its downstream effectors and vascular endothelial growth factor receptor (VEGFR)-2 on a human salivary ACC cell line (ACC2). I also evaluated the expression of EGF and VEGF signaling molecules and metastasis-related proteins on human salivary ACC cells orthotopically growing in nude mice. In Western blot and immunohistochemical analyses, EGFR and VEGFR-2 were presented and phosphorylated in ACC2 cells. In human parotid cancer xenografts in nude mice, EGF and VEGF signaling molecules, IL-8, and MMP-9 were expressed at markedly higher levels than in normal parotid tissues. Moreover, tumor-associated endothelial cells of this orthotopic parotid tumor expressed phosphorylated VEGFR-2 and phosphorylated Akt, which is a cell-survival protein. These data show that those biomarkers can be molecular targets for therapy of salivary ACC, which has a propensity for delayed lung metastasis.

Action of Mitochondrial Substrates on Neuronal Excitability in Rat Substantia Gelatinosa Neurons

  • Lee, Hae In;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.55-61
    • /
    • 2017
  • Recent studies indicate that mitochondria are an important source of reactive oxygen species (ROS) in the spinal dorsal horn. In our previous study, application of malate, a mitochondrial electron transport complex I substrate, induced a membrane depolarization, which was inhibited by pretreatment with ROS scavengers. In the present study, we used patch clamp recording in the substantia geletinosa (SG) neurons of spinal slices, to investigate the cellular mechanism of mitochondrial ROS on neuronal excitability. DNQX (an AMPA receptor antagonist) and AP5 (an NMDA receptor antagonist) decreased the malate-induced depolarization. In an external calcium free solution and addition of tetrodotoxin (TTX) for blockade of synaptic transmission, the malate-induced depolarization remained unchanged. In the presence of DNQX, AP5 and AP3 (a group I metabotropic glutamate receptor (mGluR) antagonist), glutamate depolarized the membrane potential, which was suppressed by PBN. However, oligomycin (a mitochondrial ATP synthase inhibitor) or PPADS (a P2 receptor inhibitor) did not affect the substrates-induced depolarization. These results suggest that mitochondrial substrate-induced ROS in SG neuron directly acts on the postsynaptic neuron, therefore increasing the ion influx via glutamate receptors.

Inhibition of THIP on Morphine-Induced Hyperactivity, Reverse Tolerance and Postsynaptic Dopamine Receptor Supersensitivity

  • Oh, Ki-Wan;Yoon, In-Seup;Shin, Im-Chul;Hong, Jin-Tae;Lee, Myung-Koo
    • Archives of Pharmacal Research
    • /
    • v.25 no.2
    • /
    • pp.202-207
    • /
    • 2002
  • This study was performed to investigate the effect of tetrahydroisoxazolopyridine (THIP), a $GABA_A$ agonist, on the morphine-induced hyperactivity, reverse tolerance and postsynaptic dopamine receptor supersensitivity in mice. A single administration of morphine induced hyperactivity in mice. However, the morphine-induced hyperactivity was inhibited dose-dependently by the administration of THIP (0.2, 0.4 and 0.8 mg/kg, i.p.). In contrast, daily administration of morphine resulted in a reverse tolerance to the hyperactivity caused by morphine (10 mg/kg ,s.c.). THIP inhibited the development of reverse tolerance in the mice that had received the repeated same morphine (10 mg/kg s.c.) doses. The postsynaptic dopamine receptor supersensitivity, which was evidenced by the enhanced ambulatory activity its after the administration of apomorphine (2 mg/kg s.c.), also developed in the reverse tolerant mice. THIP also inhibited the development of the postsynaptic dopamine receptor supersensitivity indulged by the chronic morphine administration. These results suggest that the hyperactivity, reverse toterance and postsynaptic dopamine receptor supersensitivity induced by morphine can be inhibited activating the $GABA_A$ receptors.

The Modulatory Role of Spinally Located Histamine Receptors in the Regulation of the Blood Glucose Level in D-Glucose-Fed Mice

  • Sim, Yun-Beom;Park, Soo-Hyun;Kim, Sung-Su;Kim, Chea-Ha;Kim, Su-Jin;Lim, Su-Min;Jung, Jun-Sub;Ryu, Ohk-Hyun;Choi, Moon-Gi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The possible roles of spinal histamine receptors in the regulation of the blood glucose level were studied in ICR mice. Mice were intrathecally (i.t.) treated with histamine 1 (H1) receptor agonist (2-pyridylethylamine) or antagonist (cetirizine), histamine 2 (H2) receptor agonist (dimaprit) or antagonist (ranitidine), histamine 3 (H3) receptor agonist (${\alpha}$-methylhistamine) or antagonist (carcinine) and histamine 4 (H4) receptor agonist (VUF 8430) or antagonist (JNJ 7777120), and the blood glucose level was measured at 30, 60 and 120 min after i.t. administration. The i.t. injection with ${\alpha}$-methylhistamine, but not carcinine slightly caused an elevation of the blood glucose level. In addition, histamine H1, H2, and H4 receptor agonists and antagonists did not affect the blood glucose level. In D-glucose-fed model, i.t. pretreatment with cetirizine enhanced the blood glucose level, whereas 2-pyridylethylamine did not affect. The i.t. pretreatment with dimaprit, but not ranitidine, enhanced the blood glucose level in D-glucose-fed model. In addition, ${\alpha}$-methylhistamine, but not carcinine, slightly but significantly enhanced the blood glucose level D-glucose-fed model. Finally, i.t. pretreatment with JNJ 7777120, but not VUF 8430, slightly but significantly increased the blood glucose level. Although histamine receptors themselves located at the spinal cord do not exert any effect on the regulation of the blood glucose level, our results suggest that the activation of spinal histamine H2 receptors and the blockade of spinal histamine H1 or H3 receptors may play modulatory roles for up-regulation and down-regulation, respectively, of the blood glucose level in D-glucose fed model.

Functional Analysis of the BMP4 Antagonists During Drosophila Embryo and Wing Development

  • Yu, Kweon
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2006
  • Drosophila Sog and vertebrate Noggin play important roles during development. They function as antagonists against BMP4 signaling and induce neural ectoderm during embryogenesis. They are also engaged in appendage formation by inhibiting BMP4 signaling during late development. To understand further functions of Sog, Supersog, which is a more potent form of Sog, and Noggin BMP4 antagonists during development, I performed the molecular genetic analysis using Drosophila embryogenesis and wing formation as assay systems. In cellular blastoderm embryos, Sog inhibited Dpp signaling, Drosophila BMP4 signaling, whereas Supersog or Noggin did not block Dpp signaling. During wing formation, Sog inhibited Sax type I receptor of Dpp signaling whereas Noggin inhibited Tkv type I receptor of Dpp signaling. However, Supersog inhibited both Sax and Tkv type I receptors. These results suggest that functions of BMP4 antagonists are developmental stage dependent and indicate that each BMP4 antagonist inhibits BMP4 signaling by blocking different BMP4 receptors.

  • PDF

Histochemical study of lectin-binding patterns in the rat vomeronasal organ during postnatal development

  • Lee, Wonho;Ahn, Meejung;Park, Changnam;Taniguchi, Kazumi;Moon, Changjong;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Histochemical patterns of lectin binding during development of the rat vomeronasal organ (VNO) were studied to determine whether glycoconjugates are differently expressed after birth. Three types of lectins, Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA), and Ulex europaeus agglutinin I (UEA-I), were studied histochemically in the rat VNO at various stages post-birth: postnatal days 1 and 7, the preweaning period (4 weeks after birth), and at sexual maturity (8 weeks after birth). The free border of the vomeronasal sensory epithelium was positive for both WGA and UEA-I in rats of all ages; whereas, VNO receptor cells and supporting cells were positive only for both WGA and UEA-I from 4 weeks after birth. DBA reactivity was detected in the free border but less so in receptor cells and supporting cells. WGA and UEA-I, but not DBA, showed similar patterns in various ages. In the Jacobson's gland, WGA, UEA-I and DBA were detected in some acini from 4 weeks after birth but not at postnatal days 1 or 7. Collectively, reactivity for three lectins, WGA, UEA-I and DBA, increased in receptor cells and gland acini during postnatal development, possibly contributing to the enhanced chemoreception in rats.

Regulation of Adenosine-activated GIRK Channels by Gq-coupled Receptors in Mouse Atrial Myocytes

  • Cho, Ha-Na
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.145-150
    • /
    • 2010
  • Adenosine (Ado) is an important mediator of the endogenous defense against ischemia-induced injury in the heart. The action of Ado is mediated by activation of G protein-gated inwardly rectifying $K^+$ (GIRK) channels. In turn, GIRK channels are inhibited by reducing phosphatidylinositol 4,5-bisphosphate ($PIP_2$) through Gq protein-coupled receptors (GqPCRs). We previously found that GIRK channels activated by acetylcholine, a muscarinic M2 acetylcholine receptor agonist, are inhibited by GqPCRs in a receptor-specific manner. However, it is not known whether GIRK channels activated by Ado signaling are also regulated by GqPCRs. Presently, this was investigated in mouse atrial myocytes using the patch clamp technique. GIRK channels were activated by $100\;{\mu}M$ Ado. When Ado was repetitively applied at intervals of 5~6 min, the amplitude of second Ado-activated GIRK currents ($I_{K(Ado)}$) was $88.3{\pm}3.7%$ of the first $I_{K(Ado)}$ in the control. Pretreatment of atrial myocytes with phenylephrine, endothelin-1, or bradykinin prior to a second application of Ado reduced the amplitude of the second $I_{K(Ado)}$ to $25.5{\pm}11.6%$, $30.5{\pm}5.6%$, and $96.0{\pm}2.7%$, respectively. The potency of $I_{K(Ado)}$ inhibition by GqPCRs was different with that observed in acetylcholine-activated GIRK currents ($I_{K(ACh)}$) (endothelin-1>phenylephrine>bradykinin). $I_{K(Ado)}$ was almost completely inhibited by $500\;{\mu}M$ of the $PIP_2$ scavenger neomycin, suggesting low $PIP_2$ affinity of $I_{K(Ado)}$. Taken together, these results suggest that the crosstalk between GqPCRs and the Ado-induced signaling pathway is receptor-specific. The differential change in $PIP_2$ affinity of GIRK channels activated by Ado and ACh may underlie, at least in part, their differential responses to GqPCR agonists.