• 제목/요약/키워드: receptor

검색결과 7,491건 처리시간 0.038초

Proteolytic cleavages of MET: the divide-and-conquer strategy of a receptor tyrosine kinase

  • Fernandes, Marie;Duplaquet, Leslie;Tulasne, David
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.239-249
    • /
    • 2019
  • Membrane-anchored full-length MET stimulated by its ligand HGF/SF induces various biological responses, including survival, growth, and invasion. This panel of responses, referred to invasive growth, is required for embryogenesis and tissue regeneration in adults. On the contrary, MET deregulation is associated with tumorigenesis in many kinds of cancer. In addition to its well-documented ligand-stimulated downstream signaling, the receptor can be cleaved by proteases such as secretases, caspases, and calpains. These cleavages are involved either in MET receptor inactivation or, more interestingly, in generating active fragments that can modify cell fate. For instance, MET fragments can promote cell death or invasion. Given a large number of proteases capable of cleaving MET, this receptor appears as a prototype of proteolytic-cleavage-regulated receptor tyrosine kinase. In this review, we describe and discuss the mechanisms and consequences, both physiological and pathological, of MET proteolytic cleavages.

Limonene Inhibits Methamphetamine-Induced Sensitizations via the Regulation of Dopamine Receptor Supersensitivity

  • Gu, Sun Mi;Kim, Sung Yeon;Lamichhane, Santosh;Hong, Jin Tae;Yun, Jaesuk
    • Biomolecules & Therapeutics
    • /
    • 제27권4호
    • /
    • pp.357-362
    • /
    • 2019
  • Limonene is a cyclic terpene found in citrus essential oils and inhibits methamphetamine- induced locomotor activity. Drug dependence is a severe neuropsychiatric condition that depends in part on changes in neurotransmission and neuroadaptation, induced by exposure to recreational drugs such as morphine and methamphetamine. In this study, we investigated the effects of limonene on the psychological dependence induced by drug abuse. The development of sensitization, dopamine receptor supersensitivity, and conditioned place preferences in rats was measured following administration of limonene (10 or 20 mg/kg) and methamphetamine (1 mg/kg) for 4 days. Limonene inhibits methamphetamine- induced sensitization to locomotor activity. Expression of dopamine receptor supersensitivity induced by apomorphine, a dopamine receptor agonist, was significantly reduced in limonenepretreated rats. However, there was no significant difference in methamphetamine-induced conditioned place preferences between the limonene and control groups. These results suggest that limonene may ameliorate drug addiction-related behaviors by regulating postsynaptic dopamine receptor supersensitivity.

DESIGN AND SYNTHESIS OF A3 ADENOSINE RECEPTOR LlGANDS, 2′-FLUORO ANALOGUES OF CI- IB-MECA

  • Park, Jae-Gyu;Kim, Hea-Ok;Moon, Hyung-Ryong;Jeong, Lak-Shin
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.365.1-365.1
    • /
    • 2002
  • Since adenosine A3 receptor has been cloned from rat brain. a number of compounds have been synthesized and evaluated for the binding affinity to this receptor. Among these. 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-methylcarboxamide (2-CI-IB-MECA) has been found to be one of the most selective agonists (Ki = 1.0 nM) for rat adenosine A3 receptor. On the basis of the high binding affinity of 2-CI-IB-MECA to adenosine A3 receptor. it was interesting to find out whether 2'-hydroxyl group of 2-CI-IB-MECA is essential for the binding affnity to the receptor. (omitted)

  • PDF

Regulation of CYP 1A1 gene expression by retinoic acid receptor, retinoid X receptor and constitutive androstane receptor in rainbow trout hepatoma cells(RTH 149)

  • Kim, Ji-Sun;Yang, So-Yeun;Seo, Mi-Jung;Sheen, Yhun-Yhong
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.119.2-119.2
    • /
    • 2003
  • Exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes a variety of biological and toxicology effects, most of which are mediated by aryl hydrocarbon receptor (AhR). The ligand-bound AhR as a heterodimer with AhR nuclear translocator (ARNT) binds to its specific DNA recognition site, the dioxin-responsive element (DRE), and it results in increased transcription of CYP1A1 gene. Retinoic acid (RA) regulates the transcription of various genes for several essential functions through binding to two classes of nuclear receptors, the retinoic acid receptor (RAR) and retinoid X receptor (RXR). (omitted)

  • PDF

Reactive oxygen species-specific characteristics of transient receptor potential ankyrin 1 receptor and its pain modulation

  • Hyun-Ji Yoon;Sung-Cherl Jung
    • Journal of Medicine and Life Science
    • /
    • 제20권1호
    • /
    • pp.1-7
    • /
    • 2023
  • Transient receptor potential ankyrin 1 (TRPA1) receptors are major polymodal nociceptors that generate primary pain responses in the peripheral nerve endings of the dorsal root ganglion neurons. Recently, we reported that the activation of TRPA1 receptors by reactive oxygen species (ROS) signaling, which is triggered by Ca2+ influx through T-type Ca2+ channels, contributes to prolonged pain responses induced by jellyfish toxin. In this review, we focus on the characteristics of the TRPA1 receptor involved in intracellular signaling as a secondary pain modulator. Unlike other transient receptor potential receptors, TRPA1 receptors can induce membrane depolarization by ROS without exogenous stimuli in peripheral and central sensory neurons. Therefore, it is important to identify the functional characteristics of TRPA1 receptors to understand pain modulation under several pathogenic conditions such as neuropathic pain syndromes and autoimmune diseases, which are mediated by oxidative signaling to cause chronic pain in the sensory system.

Targeting of integrin αvβ3 with different sequence of RGD peptides: A molecular dynamics simulation study

  • Azadeh Kordzadeh;Hassan Bardania;Esmaeil Behmard;Amin Hadi
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.105-111
    • /
    • 2023
  • Integrin αvβ3 is one of the receptors expressed in cancer cells. RGD peptides have the potential to target integrin αvβ3 (receptor), which can increase drug delivery efficiency. In this study, 55 different RGD dimer motifs were investigated. At first, the binding energy between RGD peptides and the receptor was calculated using molecular docking. Then, three RGD peptides with the strongest binding energy with the receptor were selected, and their dynamic adsorption on the receptor was simulated by molecular dynamics (MD). The obtained results showed that a sequence that has RGD at the beginning and end with tryptophan (TRP) has strong Lennard-Jones (LJ) and electrostatic interactions with Integrin αvβ3 and has changed the conformation of receptor significantly, which analyzed by root mean square deviation (RMSD) and radius of gyration.

Insulin-like Growth Factors-Ι 과 II 는 서로 다른 수용체-매개 작용기전을 통해 돼지 지방전구세포의 증식과 분화를 촉진한다 (Insulin-like Growth Factors-Ι and II Promote Proliferation and Differentiation of Cultured Pig Preadipocytes by Different Receptor-mediated Mechanisms)

  • ;김원영;김혜림;정정수
    • Journal of Animal Science and Technology
    • /
    • 제50권5호
    • /
    • pp.649-656
    • /
    • 2008
  • 본 연구는 insulin-like growth factors(IGFs)가 돼지 지방전구세포의 증식과 분화에 미치는 작용기전을 구명하기 위해서 수행하였다. 지방전구세포는 갓난 암퇘지의 등지방에서 분리하였고, serum-deprived 조건하에서 IGFs와 mutant IGFs를 함유시켜 배양했는데 이 mutant IGFs는 IGF-Ⅰ에 비해 type-1 IGF receptor와 insulin receptor에 대한 친화력이 낮다. 50ng/ml의 IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27]IGF-Ⅱ를 배양중인 세포에 4일동안 처리했다. IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27]IGF-Ⅱ는 돼지 지방전구세포의 증식을 각각 39%, 8%, 25% 및 2% 촉진했다(증가된 세포수에 의해 측정). 이 사실은 IGF-Ⅰ과 IGF-Ⅱ는 type-1 IGF receptor 또는 insulin receptor에 결합을 통해서 지방세포의 증식 촉진을 가져왔음을 나타낸다. 그리고 IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27] IGF-Ⅱ는 지방전구세포의 분화를 50%, 17%, 37% 및 30% 각각 촉진시켰다(세포 분화는 glycerol- phosphate dehydrogenase 활성도에 의해 측정했다). IGF-Ⅰ의 type-1 IGF receptor 또는 insulin receptor에의 친화력이 낮아져서 세포 분화 촉진작용을 감소시킨 것이다. 그러나 [Leu27] IGF-Ⅱ의 분화촉진 작용은 IGF-Ⅱ의 그것에 비해 크게 차이가 나지 않았는데, 이 사실은 IGF-Ⅰ과 IGF-Ⅱ는 서로 다른 수용체-매개 작용기전에 의해 세포분화를 촉진시킴을 나타낸다. 즉 IGF-Ⅱ는 type-1 IGF receptor 또는 insulin receptor가 관여하지 않는 작용을 통해 돼지 지방전구세포의 분화를 촉진시켰다. 이 작용은 IGF-Ⅱ가 type-2 IGF receptor(또는 cation- independent mannose-6 phosphate receptor [CIM6P /IGF2 receptor])에 결합을 통해서 이뤄지는 것으로 여겨진다. 위의 결과는 IGF-Ⅱ가 CIM6P/ IGF2 receptor에의 결합을 통해 동물 지방전구세포의 분화를 촉진시킨다는 것을 밝혀낸 최초의 연구이다. 요약하면 이 본 연구는 IGF-Ⅰ과 IGF-Ⅱ는 서로 다른 세포내 receptor가 관여하는 작용기전을 통해 돼지 지방전구세포의 분화를 촉진함을 보여준다.

Lamotrigine, an antiepileptic drug, inhibits 5-HT3 receptor currents in NCB-20 neuroblastoma cells

  • Kim, Ki Jung;Jeun, Seung Hyun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.169-177
    • /
    • 2017
  • Lamotrigine is an antiepileptic drug widely used to treat epileptic seizures. Using whole-cell voltage clamp recordings in combination with a fast drug application approach, we investigated the effects of lamotrigine on 5-hydroxytryptamine $(5-HT)_3$ receptors in NCB-20 neuroblastoma cells. Co-application of lamotrigine ($1{\sim}300{\mu}M$) resulted in a concentration-dependent reduction in peak amplitude of currents induced by $3{\mu}m$ of 5-HT for an $IC_{50}$ value of $28.2{\pm}3.6{\mu}M$ with a Hill coefficient of $1.2{\pm}0.1$. These peak amplitude decreases were accompanied by the rise slope reduction. In addition, $5-HT_3$-mediated currents evoked by 1 mM dopamine, a partial $5-HT_3$ receptor agonist, were inhibited by lamotrigine co-application. The $EC_{50}$ of 5-HT for $5-HT_3$ receptor currents were shifted to the right by co-application of lamotrigine without a significant change of maximal effect. Currents activated by 5-HT and lamotrigine co-application in the presence of 1 min pretreatment of lamotrigine were similar to those activated by 5-HT and lamotrigine co-application alone. Moreover, subsequent application of lamotrigine in the presence of 5-HT and 5-hydroxyindole, known to attenuate $5-HT_3$ receptor desensitization, inhibited $5-HT_3$ receptor currents in a concentration-dependent manner. The deactivation of $5-HT_3$ receptor was delayed by washing with an external solution containing lamotrigine. Lamotrigine accelerated the desensitization process of $5-HT_3$ receptors. There was no voltage-dependency in the inhibitory effects of lamotrigine on the $5-HT_3$ receptor currents. These results indicate that lamotrigine inhibits $5-HT_3$-activated currents in a competitive manner by binding to the open state of the channels and blocking channel activation or accelerating receptor desensitization.

Effects of ${\alpha}_1-Adrenergic$ Receptor Stimulation on Intracellular $Na^+$ Activity and Twitch Force in Guinea-Pig Ventricular Muscles

  • Chae, Soo-Wan;Gong, Q.Y.;Wang, D.Y.;Lee, Chin-O.
    • The Korean Journal of Physiology
    • /
    • 제29권2호
    • /
    • pp.203-216
    • /
    • 1995
  • The effects of ${\alpha}_1-adrenergic$ receptor stimulation on membrane potential, intracellular $Na^+$ activity, and twitch force were investigated in ventricular muscles from guinea-pig hearts. Action potentials, intracellular $Na^+$ activity, and twitch force of ventricular papillary muscles were measured simultaneously under various experimental conditions. Stimulation of the ${\alpha}_1-adrenergic$ receptor by phenylephrine produced variable changes in action potential duration, a slight hyperpolarization of the diastolic membrane potential, a decrease in intracellular $Na^+$ activity, and a biphasic inotropic response in which a transient negative inotropic response was followed by a sustained positive inotropic response. These changes were blocked by prazosin, an antagonist of the ${\alpha}_1-adrenergic$ receptor, but not by atenolol, an antagonist of the ${\beta}-adrenergic$ receptor. This indicates that the changes in membrane potential, intracellular $Na^+$ activity, and twitch force are mediated by stimulation of the ${\alpha}_1-adrenergic$ receptor, but not by stimulation of ${\beta}-adrenergic$ receptor. The decrease in intracellular $Na^+$ activity was not observed in quiescent muscles, depending on the rate of the action pontentials in beating muscles. The intracellular $Na^+$ activity decrease was substantially inhibited by tetrodotoxin. However, the decrease in intracellular $Na^+$ activity was not affected by an inhibition of the $Na^+-K^+$ pump. Therefore, the decrease in intracellular $Na^+$ activity mediated by the ${\alpha}_1-adrenergic$ receptor appears to be due to a reduction of $Na^+$ influx during the action potential, perhaps through tetrodotoxin sensitive $Na^+$ channels. Our study also revealed that the decrease in intracellular $Na^+$ activity might be related to the transient negative inotropic response. The intracellular $Na^+$ activity decrease could lower intracellular $Ca^{2+}$ through the $Na^+-Ca^{2+}$ exchanger and thereby produce a decline in twitch force.

  • PDF

Interaction between the p75 neurotrophin receptor and a novel adaptor protein

  • Lee, Yun-Hee;Yu, Ji-Hee;Cho, Jung-Sun;Park, Han-Jeong;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • 제33권2호
    • /
    • pp.71-76
    • /
    • 2008
  • The neurotrophin plays an important role in the development, differentiation and survival of the nervous system in vertebrates. It exerts its cellular effects through two different receptors, the Trk receptor tyrosine kinase neurotrophin receptor and the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily. Trk and p75 neurotrophin receptors utilize specific target proteins to transmit signals into the cell. An ankyrin-rich membrane spanning protein (ARMS) was identified as a new p75 interacting protein and serves as a novel downstream target of p75 neurotrophin receptor. We sought to delineate the interaction between p75 and ARMS by deletion constructs of p75 and green fluorescent protein (GFP)-tagged ARMS. We examined the interaction between these two proteins after overexpressing them in HEK-293 cells. Using both Western blot analysis and immunocytochemistry followed by confocal laser scanning microscopy, we found out that the intracellular domain of the p75 neurotrophin receptor was important for the interaction with ARMS. The results from this study suggest that ARMS may play an important role for mediating the signals from p75 neurotrophin receptor into the cell.