DOI QR코드

DOI QR Code

Insulin-like Growth Factors-Ι and II Promote Proliferation and Differentiation of Cultured Pig Preadipocytes by Different Receptor-mediated Mechanisms

Insulin-like Growth Factors-Ι 과 II 는 서로 다른 수용체-매개 작용기전을 통해 돼지 지방전구세포의 증식과 분화를 촉진한다

  • Ownes, Phillip (Department of Chemistry, University of Wisconsin-Waukesha, Waukesha, WI53188, USA) ;
  • Kim, Won-Young (Department of Animal Science, Chungbuk National University) ;
  • Kim, Hye-Rim (Department of Animal Science, Chungbuk National University) ;
  • Chung, Chung-Soo (Department of Animal Science, Chungbuk National University)
  • ;
  • 김원영 (충북대학교 농업생명환경대학 축산학과) ;
  • 김혜림 (충북대학교 농업생명환경대학 축산학과) ;
  • 정정수 (충북대학교 농업생명환경대학 축산학과)
  • Published : 2008.10.01

Abstract

The current study was undertaken to investigate the mechanism of action of insulin-like growth factors (IGFs) on proliferation and differentiation of pig preadipocytes. The preadipocytes were isolated from the backfat of new-born female pigs and cultured in serum-deprived medium in the presence and absence of recombinant native IGFs or recombinant mutant IGFs that have reduced affinity for binding to both type-1 IGF receptors and insulin receptors. Fifty ng/ml of either IGF-I, [Leu60]IGF-I, IGF-Ⅱ or [Leu27]IGF-Ⅱ were included in the media in which preadipocytes were cultured for 4 days. IGF-I, [Leu60]IGF-I, IGF-Ⅱ and [Leu27]IGF-Ⅱ stimulated proliferation of pig preadipocytes by 39%, 8%, 25% and 2% respectively, as measured by increased numbers of cells. This indicates that both IGF-I and -II promote replication of pig preadipocytes by actions mediated either by type-1 IGF receptor or insulin receptor. IGF-I, [Leu60]IGF-I, IGF-Ⅱ and [Leu27]IGF-Ⅱ stimulated differentiation of pig preadipocytes by 50%, 17%, 37% and 30%, respectively, measured as glycerolphosphate dehydrogenase activity. Reducing the affinity of IGF-I for type-1 IGF receptors or insulin receptors significantly reduced the differentiation response. However, the differentiation response to [Leu27]IGF-II was not significantly different from the response to IGF-II. This shows that IGF-I and IGF-Ⅱ promote cell differentiation by different receptor-mediated mechanisms. IGF-II promotes differentiation of pig preadipocytes by actions that do not involve either type-1 IGF receptors or insulin receptors. These actions therefore appear to be mediated by binding of IGF-II to type-2 IGF receptors(also known as cation-independendent mannose-6-phosphate receptor[CIM6P/IGF2 receptor]). This is the first study to find evidence that IGF-II promotes differentiation of preadipocytes from any animal species by actions mediated by CIM6P/IGF2 receptors. In summary, this study shows that IGF-I and IGF-Ⅱ promote differentiation of pig preadipocytes by mechanisms that involve different cellular receptors.

본 연구는 insulin-like growth factors(IGFs)가 돼지 지방전구세포의 증식과 분화에 미치는 작용기전을 구명하기 위해서 수행하였다. 지방전구세포는 갓난 암퇘지의 등지방에서 분리하였고, serum-deprived 조건하에서 IGFs와 mutant IGFs를 함유시켜 배양했는데 이 mutant IGFs는 IGF-Ⅰ에 비해 type-1 IGF receptor와 insulin receptor에 대한 친화력이 낮다. 50ng/ml의 IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27]IGF-Ⅱ를 배양중인 세포에 4일동안 처리했다. IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27]IGF-Ⅱ는 돼지 지방전구세포의 증식을 각각 39%, 8%, 25% 및 2% 촉진했다(증가된 세포수에 의해 측정). 이 사실은 IGF-Ⅰ과 IGF-Ⅱ는 type-1 IGF receptor 또는 insulin receptor에 결합을 통해서 지방세포의 증식 촉진을 가져왔음을 나타낸다. 그리고 IGF-Ⅰ, [Leu60]IGF-I, IGF-Ⅱ 및 [Leu27] IGF-Ⅱ는 지방전구세포의 분화를 50%, 17%, 37% 및 30% 각각 촉진시켰다(세포 분화는 glycerol- phosphate dehydrogenase 활성도에 의해 측정했다). IGF-Ⅰ의 type-1 IGF receptor 또는 insulin receptor에의 친화력이 낮아져서 세포 분화 촉진작용을 감소시킨 것이다. 그러나 [Leu27] IGF-Ⅱ의 분화촉진 작용은 IGF-Ⅱ의 그것에 비해 크게 차이가 나지 않았는데, 이 사실은 IGF-Ⅰ과 IGF-Ⅱ는 서로 다른 수용체-매개 작용기전에 의해 세포분화를 촉진시킴을 나타낸다. 즉 IGF-Ⅱ는 type-1 IGF receptor 또는 insulin receptor가 관여하지 않는 작용을 통해 돼지 지방전구세포의 분화를 촉진시켰다. 이 작용은 IGF-Ⅱ가 type-2 IGF receptor(또는 cation- independent mannose-6 phosphate receptor [CIM6P /IGF2 receptor])에 결합을 통해서 이뤄지는 것으로 여겨진다. 위의 결과는 IGF-Ⅱ가 CIM6P/ IGF2 receptor에의 결합을 통해 동물 지방전구세포의 분화를 촉진시킨다는 것을 밝혀낸 최초의 연구이다. 요약하면 이 본 연구는 IGF-Ⅰ과 IGF-Ⅱ는 서로 다른 세포내 receptor가 관여하는 작용기전을 통해 돼지 지방전구세포의 분화를 촉진함을 보여준다.

Keywords

References

  1. Balhoff, J. P. and Stephens, J. M. 1998. Highly specific and quantitative activation of STATs in 3T3-L1 adipocytes. Biochemical and Biophysical Research Communications. 247:894-900 https://doi.org/10.1006/bbrc.1998.8890
  2. Basarab, J. A., Okine, E. K. and Moore, S. S. 2004. Residual feed intake: animal performance, carcass quality and body composition. 2004 Florida Ruminant Nutrition Symposium:40-50
  3. Bayne, M. L., Applebaum, J., Chicchi, G. C., Miller, R. E. and Cascieri, M. A. 1990. The roles of tyrosines 24, 31 and 60 in the high affinity binding of insulin-like growth factor-I to the type-1 insulin-like growth factor receptor. Journal of Biological Chemistry 265:15648-15652
  4. Beukers, M. W., Oh, Y., Zhang, H., Ling, N. and Rosenfeld, R. G. 1991. insulin-like growth factor-II is highly selective for the type-II IGF receptor in binding, cross-linking and thymidine incorporation experiments. Endocrinology 128:1201-3 https://doi.org/10.1210/endo-128-2-1201
  5. Buonomo, F. C. and Klindt, J. 1993. Insulin-like growth factors(IGF-I and IGF-II) and IGF-binding protein-2(IGFBP-2) in genetically lean and obese pigs. Domestic Animal Endocrinology 10:257-265 https://doi.org/10.1016/0739-7240(93)90030-F
  6. Chen, N. X., hausman, G. J. and Wright, J. T. 1996. Hormonal regulation of insulin-like growth factor binding proteins and insulin-like growth factor-I (IGF-I) secretion in porcine stromal-vascular cultures. Journal of Animal Science 74:2369-2375
  7. Cohick, W. S. and Clemmons, D. R. 1993. The Insulin-Like Growth Factors. Animal Review of Physiology 55:131-153 https://doi.org/10.1146/annurev.ph.55.030193.001023
  8. Coleman, M. E., Russell, L. and Etherton, T. D. 1994. Porcine somatotropin(pST) increases IGF-I mRNA in liver and adipose tissue but not in skeletal muscle of growing pigs. Journal of Animal Science 72:918-924
  9. Fernyhough, Me., Okine, E., Hausman, G., Vierck, J. L. and Dodson. M. V. 2007. PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. Domest. Anim. Endocrinol. 33:367-78 https://doi.org/10.1016/j.domaniend.2007.05.001
  10. Francis, G. L., Owens, P. C., McNeil, K. A., Wallace, J. C. and Ballard, F. J. 1989. Purification, amino acid sequences and assay cross-reactivities of porcine insulin-like growth factor-I and -II. J Endocrinol 122:681-687 https://doi.org/10.1677/joe.0.1220681
  11. Gatford, K. L., Egan, A. R., Clarke, I. J. and Owens, P. D. 1998. Sexual dimorphism of the somatotropic axis. Journal of Endocrinology 157:373-389 https://doi.org/10.1677/joe.0.1570373
  12. Gleeson, H. K., Lissett, C. A. and Shalet, S. M. 2005. Insulin-like growth factor-I response to a single bolus of growth hormone is increased in dbesity. Journal of Clinical Endocrinology and Metabolism 90:1061-1067 https://doi.org/10.1210/jc.2004-0501
  13. Godar, S., Horejsi, U. H., Binder, B. R., Hansmann, C. and Stockinger, H. 1999. M6P/IGF II-receptor complexes urokinase recetor and plasminogen for activation of transforming growth factor-${\beta}1$. European Journal of Immunology 29:1004-1013 https://doi.org/10.1002/(SICI)1521-4141(199903)29:03<1004::AID-IMMU1004>3.0.CO;2-Q
  14. Hausman, G. J. and Hausman, D. B. 2006. Search for the preadipocyte progenitor cell. J. Clin. Invest. 116:3103-6 https://doi.org/10.1172/JCI30666
  15. Korner, A., Keiss, W., Stumvoll, M. and Kovacs, P. 2008. polygenic contribution to obesity: genome- wide strategies reveal new targets. Frontiers in Hormone Research 36:12-36
  16. Lamberson, W. R., Safranski, T. J., Bates, R. O., Keisler, D. H. and Matteri, R. L. 1995. Relationships of serum insulin-like growth factor I concertrations to growth, compositon and reproductive traits of swine. Journal of Animal Science 73:3241-3245 https://doi.org/10.2527/1995.73113241x
  17. Lee, C. Y., Chung, C. S. and Simmen, F. A. 1993. Ontogeny of the porcine insulin-growth factor system. Molecular and Cellular Endocrinology 93:71-80 https://doi.org/10.1016/0303-7207(93)90141-6
  18. Le Roith, D. 1997. Insulin-like growth factors. Seminars in Medicine of the Beth Israel Deaconess Medical Center 336:663-640
  19. Matteri, R. L., Dyer, C. J., Touchette, K. J., Carroll, J. A. and Allee, G. L. 2000. Effects of weaning on somatotrophic gene expression and circulating levels of insulin-like growth factor-1 (IGF-1) and IGF-2 in pigs. Domestic Animal Endocrinology 19:247-259 https://doi.org/10.1016/S0739-7240(00)00081-3
  20. Owens, P. C., Gatford, K. L., Walton, P. E., Morley, E. and Campbell, R. G. 1999. The relationship between endogenous insulin-like growth factors and growth in pigs. Journal of Animal Science 77:2098-2103 https://doi.org/10.2527/1999.7782098x
  21. Permana, P. A., Nair, S., Lee Y.- H., Luczy-Bachman, De courten, B. V. and Tataranni, P. A. 2004. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity. American Journal of Physiology- Endocrinology & Metabolism 286:E958-E962 https://doi.org/10.1152/ajpendo.00544.2003
  22. Sakano, K., Enjoh, T., Numata, F., Fujiwara, H., Marumoto, Y., Higashihashi, H., Sata, Y., Perdue, J. F. and Fujita-Yamaguchi, Y. 1991. The design, expression, and characterization of human insulin-like growth factor-II(IGF-II) mutants specific for either the IGF-II/cation-independent mannose 6-phosphate receptor or IGF-I receptor. Journal of Biological Chemistry 266:20626-20635
  23. SAS. 1991. User's Guide Statistical Analysis System Institute, Cary N.C.
  24. Savell, J. W., Cross, H. R. and Smith, G. C. 1986. Percentage of ether extractable fat and moisture content of beef longissimus muscle is related to UDSA marbling score. Journal of Food Science 51:858
  25. Schmitz, H.-D. and Bereiter-Hahn, J. 2002. Glyceraldehyde-3-phosphate dehydrogenase associates with actin filaments ni serum deprived NIH 3T3 cells only. Cell Biology International 26:155-164 https://doi.org/10.1006/cbir.2001.0819
  26. Suryawan, A., Swanson, L. V. and Hu, C. Y. 1997. Insulin and hydrocortisone, but not triiodothyronine, are required for the differentiation of pig preadipocytes in primary culture. Journal of Animal Science 75:105-111
  27. Tominaga, K., Johmura, Y., Nishizuka, M. and Imagawa, M. 2004. Fad24, a mammalian homolog of Noc3p, is a positive regulator in adipocyte differentiation. Journal of Cell Science 117:6217-6226 https://doi.org/10.1242/jcs.01546
  28. Tong, Q., Tsai, J., Tan, G., Dalgin, G. and Hotamisligil, G. S. 2005. Interaction between GATA and the C/EBP family of transcription factors in critical in GATA-mediated suppression of adipocyte differentiation. Molecular & Cellular Biology 25:706-715 https://doi.org/10.1128/MCB.25.2.706-715.2005
  29. Wise, L. S. and Green, H. 1979. Participation of one isozyme of cytosolic glycerophosphate in adipose conversion of 3T3 cell. Journal of Biological Chemistry 254:273-275
  30. 문현석, 정정수. 2004. Conjugated Linoleic Acid(CLA) 이성체가 돼지 지방전구세포의 분화에 미치는 영향. 한국동물자원과학회지. 46:967-974

Cited by

  1. Cells vol.55, pp.1, 2013, https://doi.org/10.5187/JAST.2013.55.1.19