• Title/Summary/Keyword: receiver-on-vehicle

Search Result 109, Processing Time 0.028 seconds

Receiver Protection from Electrical Shock in Vehicle Wireless Charging Environments

  • Park, Taejun;Hwang, Kwang-il
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.677-687
    • /
    • 2020
  • This paper deals with the electrical shock that can occur in a car wireless charging system. The recently released the Wireless Power Consortium (WPC) standard specifies that the receiver must be protected from the radio power generated by the transmitter and presents two scenarios in which the receiver may be subjected to electrical shock due to the wireless power generated by the transmitter. The WPC also provides a hardware approach for blocking the wireless power generated by the transmitter to protect the receiver in each situation. In addition, it presents the hardware constraints that must be applied to the transmitter and the parameters that must be constrained by the software. In this paper, we analyze the results of the electric shock in the vehicle using the WPC certified transmitter and receiver in the scenarios presented by WPC. As a result, we found that all the scenarios had electrical shocks on the receiver, which could have a significant impact on the receiver circuitry. Therefore, we propose wireless power transfer limit (WPTL) algorithm to protect receiver circuitry in various vehicle charging environments.

Development of a GPS Receiver System for Satellite Launch Vehicles (위성발사체용 GPS 수신기 시스템의 개발)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.929-937
    • /
    • 2008
  • A GPS receiver system utilized on satellite launch vehicles should operate normally under harsh environments as well as high-dynamic conditions. The GPS receiver system to use for range safety of KSLV(Korea Space Launch Vehicle)-I that is the first satellite launch vehicle developed by KARI(Korea Aerospace Research Institute) has been confirmed to survive under the environment of the launcher through extensive terrestrial tests including humidity, high and low temperatures, vacuum, sinusoidal and random vibrations, shocks, acceleration, EMI/EMC(Electromagnetic Interference/ Electromagnetic Compatibility), etc. Several performance tests have been also carried out in order to evaluate tracking capability and accuracy of the GPS receiver under high-dynamic conditions using a GPS signal simulator. Some lessons-learned during development of the GPS receiver system and its special characteristics compared with COTS(Commercial-Off-The-Shelf) GPS receiver systems are described in this paper.

Multi-antenna diversity gain in terrestrial broadcasting receivers on vehicles: A coverage probability perspective

  • Ahn, Sungjun;Lee, Jae-young;Lim, Bo-Mi;Kwon, Hae-Chan;Hur, Namho;Park, Sung-Ik
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.400-413
    • /
    • 2021
  • This paper theoretically and empirically explores the reliability gain that can be obtained by installing multiple antennas in on-vehicle broadcasting receivers. Analytical derivations reveal that maximal-ratio-combining-based diversity allows a multi-antenna receiver (MR) to achieve significantly better coverage probability than a single-antenna receiver (SR). In particular, the notable MR gains for low-power reception and high-throughput services are highlighted. We also discuss various aspects of mobile MRs, including geometric coverage, volume of the users served, and impact of receiver velocity. To examine the feasibility of MRs in the real world, extensive field experiments were conducted, particularly with on-air ATSC 3.0 broadcast transmissions. Relying on the celebrated erroneous second ratio criterion, MRs with two and four antennas were verified to achieve notable reliability gains over SRs in practice. Furthermore, our results also prove that layered-division multiplexing can cope better with receiver mobility than traditional time-division multiplexing when multiple services are intended in the same radio frequency channel.

Algorithm for Improving GPS Performance by Data Pre-processing (데이터 사전처리에 의한 GPS 성능 개선 알고리즘)

  • Rhee Jae-Hoon;Hong Won-Chul;Kim Hyun-Soo;Jeon Chang-Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.752-758
    • /
    • 2006
  • A GPS receiver provides much information such as calculated position, speed, heading, status of satellites, current time errors, etc. It is well-known that GPS signals from GPS receiver mounted on moving vehicle are often distorted, contaminated by various noises, and blocked by tunnel or tall buildings. The phenomenon often obstructs correct navigation especially when a vehicle keeps stopping or is moving in low speed. Therefore it is needed to pre-process the signals to adapt it to various applications. In this paper, an algorithm to pre-process the signals is proposed. For this, GPS data obtaining from uNAV GPS receiver are analyzed and classified based on dynamic characteristic. Then, the proposed algorithm is applied to the data and some test results are shown to verify the usefulness of the algorithm.

Study on INS/GPS Sensor Fusion for Agricultural Vehicle Navigation System (농업기계 내비게이션을 위한 INS/GPS 통합 연구)

  • Noh, Kwang-Mo;Park, Jun-Gul;Chang, Young-Chang
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.423-429
    • /
    • 2008
  • This study was performed to investigate the effects of inertial navigation system (INS) / global positioning system (GPS) sensor fusion for agricultural vehicle navigation. An extended Kalman filter algorithm was adopted for INS/GPS sensor fusion in an integrated mode, and the vehicle dynamic model was used instead of the navigation state error model. The INS/GPS system was consisted of a low-cost gyroscope, an odometer and a GPS receiver, and its performance was tested through computer simulations. When measurement noises of GPS receiver were 10, 1.0, 0.5, and 0.2 m ($1{\sigma}$), RMS position and heading errors of INS/GPS system at 5 m/s straight path were remarkably reduced with 10%, 35%, 40%, and 60% of those obtained from the GPS receiver, respectively. The decrease of position and heading errors by using INS/GPS rather than stand-alone GPS can provide more stable steering of agricultural equipments. Therefore, the low-cost INS/GPS system using the extended Kalman filter algorithm may enable the self-autonomous navigation to meet required performance like stable steering or more less position errors even in slow-speed operation.

Performance Analyses of the GPS Receiver for Satellite Launch Vehicles according to Temperature Variation (온도변화에 따른 위성발사체용 GPS 수신기의 성능분석)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.101-108
    • /
    • 2005
  • The GPS(Global Positioning System) receiver for satellite launch vehicles which will be mounted on a launch vehicle can be applied to the flight safety system with its accurately calculated position and velocity data during vehicle's flight. This paper analyzes the performance of the GPS receiver such as SNR(Signal to Noise Ratio), fix mode, position and velocity error, number of visible and tracking satellites, and PDOP(Position Dilution of Precision) under temperature variation which is changed from -34$^{\circ}C$ to +71$^{\circ}C$.

Electromagnetic Test of the GPS Receiver System for a Satellite Launch Vehicle - Part I. Outline & Emission Test (위성발사체용 GPS 수신기 시스템의 전자파시험 - Part I. 시험개요 및 방사시험)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.329-337
    • /
    • 2007
  • This paper deals with electromagnetic tests of the GPS receiver system that should be developed to satisfy emission and susceptibility requirements for a satellite launch vehicle. Performance of the GPS receiver system against electromagnetic environment that is improved through several tests satisfies all requirements about electromagnetic tests. The outline of the electromagnetic tests and emission test results of CE102, CE106 and RE102 on MIL-STD-461E are described in Part I.

Electromagnetic Test of the GPS Receiver System for a Satellite Launch Vehicle - Part II. Susceptibility Test (위성발사체용 GPS 수신기 시스템의 전자파시험 - Part II. 내성시험)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.338-346
    • /
    • 2007
  • This paper deals with electromagnetic tests of the GPS receiver system that should be developed to satisfy emission and susceptibility requirements for a satellite launch vehicle. The performance of the GPS receiver system against electromagnetic environment that is improved through several tests satisfies all requirements about electromagnetic tests. The susceptibility test results of CS101, CS114, CS115, CS116 and RS103 on MIL-STD-461E are described in Part II.

Performance Analysis of IEEE 802.15.4a System in UWB Intra Vehicle Communications Channel (UWB 차량통신 채널에서 IEEE 802.15.4a 시스템의 성능 분석)

  • Khuandaga, Gulmira;Lee, Cheon-Hee;Kim, Baek-Hyun;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.1
    • /
    • pp.53-65
    • /
    • 2012
  • Recently wireless intra-vehicle communication has received a great interest from the automotive industry and ultra wideband (UWB) technology is considered as one of the potential candidate for this system. Many research works have been done on the measurement and modeling of intra-vehicle communication channel. However, very little work has been reported for the performance analysis of various PHY layer methods under the intra-vehicle communication environment. This paper is to study IEEE 802.15.4a standard in intra-vehicle channel and to evaluate its performance. Channel model in chassis and engine compartment is considered for evaluation. Through simulation BER performance of system with different receiver structures is analyzed.

Operation of the GPS Receiver System for KSLV-I on the Launch Site at Naro Space Center (나로우주센터 발사장에서 나로호 GPS 수신기 시스템의 운용)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.7
    • /
    • pp.737-745
    • /
    • 2010
  • This paper describes the operation results of the GPS receiver system for KSLV (Korea Space Launch Vehicle)-I on the launch site at Naro Space Center that is the first spaceport of South Korea located at Goheung. All equipments of KSLV-I including the GPS receiver system should be monitored and controlled through hard-wired interface during KSLV-I is on standby at the launch pad. The GPS receiver for KSLV-I is connected to triple almost omni-directional patch antennas mounted on the cylindrical surface of KSLV-I that should be erected vertically on the launch pad until lift-off. Signal interference and multipath effects observed in the GPS receiver on the launch site are analyzed in this paper based on the GPS signals received from each GPS antenna.