• Title/Summary/Keyword: receiver

Search Result 6,384, Processing Time 0.034 seconds

Risk-Scoring System for Prediction of Non-Curative Endoscopic Submucosal Dissection Requiring Additional Gastrectomy in Patients with Early Gastric Cancer

  • Kim, Tae-Se;Min, Byung-Hoon;Kim, Kyoung-Mee;Yoo, Heejin;Kim, Kyunga;Min, Yang Won;Lee, Hyuk;Rhee, Poong-Lyul;Kim, Jae J.;Lee, Jun Haeng
    • Journal of Gastric Cancer
    • /
    • v.21 no.4
    • /
    • pp.368-378
    • /
    • 2021
  • Purpose: When patients with early gastric cancer (EGC) undergo non-curative endoscopic submucosal dissection requiring gastrectomy (NC-ESD-RG), additional medical resources and expenses are required for surgery. To reduce this burden, predictive model for NC-ESD-RG is required. Materials and Methods: Data from 2,997 patients undergoing ESD for 3,127 forceps biopsy-proven differentiated-type EGCs (2,345 and 782 in training and validation sets, respectively) were reviewed. Using the training set, the logistic stepwise regression analysis determined the independent predictors of NC-ESD-RG (NC-ESD other than cases with lateral resection margin involvement or piecemeal resection as the only non-curative factor). Using these predictors, a risk-scoring system for predicting NC-ESD-RG was developed. Performance of the predictive model was examined internally with the validation set. Results: Rate of NC-ESD-RG was 17.3%. Independent pre-ESD predictors for NC-ESD-RG included moderately differentiated or papillary EGC, large tumor size, proximal tumor location, lesion at greater curvature, elevated or depressed morphology, and presence of ulcers. A risk-score was assigned to each predictor of NC-ESD-RG. The area under the receiver operating characteristic curve for predicting NC-ESD-RG was 0.672 in both training and validation sets. A risk-score of 5 points was the optimal cut-off value for predicting NC-ESD-RG, and the overall accuracy was 72.7%. As the total risk score increased, the predicted risk for NC-ESD-RG increased from 3.8% to 72.6%. Conclusions: We developed and validated a risk-scoring system for predicting NC-ESD-RG based on pre-ESD variables. Our risk-scoring system can facilitate informed consent and decision-making for preoperative treatment selection between ESD and surgery in patients with EGC.

Accuracy of one-step automated orthodontic diagnosis model using a convolutional neural network and lateral cephalogram images with different qualities obtained from nationwide multi-hospitals

  • Yim, Sunjin;Kim, Sungchul;Kim, Inhwan;Park, Jae-Woo;Cho, Jin-Hyoung;Hong, Mihee;Kang, Kyung-Hwa;Kim, Minji;Kim, Su-Jung;Kim, Yoon-Ji;Kim, Young Ho;Lim, Sung-Hoon;Sung, Sang Jin;Kim, Namkug;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.52 no.1
    • /
    • pp.3-19
    • /
    • 2022
  • Objective: The purpose of this study was to investigate the accuracy of one-step automated orthodontic diagnosis of skeletodental discrepancies using a convolutional neural network (CNN) and lateral cephalogram images with different qualities from nationwide multi-hospitals. Methods: Among 2,174 lateral cephalograms, 1,993 cephalograms from two hospitals were used for training and internal test sets and 181 cephalograms from eight other hospitals were used for an external test set. They were divided into three classification groups according to anteroposterior skeletal discrepancies (Class I, II, and III), vertical skeletal discrepancies (normodivergent, hypodivergent, and hyperdivergent patterns), and vertical dental discrepancies (normal overbite, deep bite, and open bite) as a gold standard. Pre-trained DenseNet-169 was used as a CNN classifier model. Diagnostic performance was evaluated by receiver operating characteristic (ROC) analysis, t-stochastic neighbor embedding (t-SNE), and gradient-weighted class activation mapping (Grad-CAM). Results: In the ROC analysis, the mean area under the curve and the mean accuracy of all classifications were high with both internal and external test sets (all, > 0.89 and > 0.80). In the t-SNE analysis, our model succeeded in creating good separation between three classification groups. Grad-CAM figures showed differences in the location and size of the focus areas between three classification groups in each diagnosis. Conclusions: Since the accuracy of our model was validated with both internal and external test sets, it shows the possible usefulness of a one-step automated orthodontic diagnosis tool using a CNN model. However, it still needs technical improvement in terms of classifying vertical dental discrepancies.

Does dexmedetomidine combined with levobupivacaine in inferior alveolar nerve blocks among patients undergoing impacted third molar surgery control postoperative morbidity?

  • Patil, Shweta Murlidhar;Jadhav, Anendd;Bhola, Nitin;Hingnikar, Pawan;Kshirsagar, Krutarth;Patil, Dipali
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.22 no.2
    • /
    • pp.145-153
    • /
    • 2022
  • Background: Postoperative analgesia (POA) is an important determinant of successful treatment. Dexmedetomidine (DEX) has recently gained attention as a promising adjuvant to local anesthetics (LA). The present study aimed to evaluate the efficacy and safety of levobupivacaine (LB) as an adjuvant during inferior alveolar nerve block (IANB) in the extraction of lower impacted third molars (LITM). Methods: A prospective, randomized, placebo-controlled, triple-blind, parallel-arm, and clinical study was performed on 50 systemically healthy participants who required removal of an asymptomatic LITM. Using a 1:1 distribution, the participants were randomized into two groups (n = 25). Group L (control group) received 1.8 mL of 0.5% LB and 0.2 mL normal saline (placebo) and Group D (study group) received a blend of 1.8 mL of 0.5% LB and 0.2 mL (20 ㎍) DEX. The primary outcome variable was the duration of POA and hemodynamic stability, and the secondary variable was the total number of analgesics required postoperatively for up to 72 h. The participants were requested to record the time of rescue analgesic use and the total number of rescue analgesics taken. The area under the curve was plotted for the total number of analgesics administered. The pain was evaluated using the visual analog scale. Data analysis was performed using paired students and unpaired t-test, Mann-Whitney U test, Chi-square test, and receiver operating characteristic analysis. Statistical significance was set at P < 0.05. Results: The latency, profoundness of anesthesia, and duration of POA were statistically significant (P < 0.05). The differences between mean pain scores at 6, 12, 24, 48, and 72 h were found to be significant (each P = 0.0001). Fewer analgesics were required by participants in group D (2.12 ± 0.33) than in L (4.04 ± 0.67), with a significant difference (P = 0.0001). Conclusion: Perineurally administered LA with DEX is a safe, effective, and therapeutic approach for improving latency, providing profound POA, and reducing the need for postoperative analgesia.

The Effect of Hounsfield Unit Value with Conventional Computed Tomography and Intraoperative Distraction on Postoperative Intervertebral Height Reduction in Patients Following Stand-Alone Anterior Cervical Discectomy and Fusion

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Ki, Sung Soon;Lee, Sang Weon;Song, Geun Sung;Woo, Joon Bum;Kim, Young Ha
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.1
    • /
    • pp.96-106
    • /
    • 2022
  • Objective : The most common complication of anterior cervical discectomy and fusion (ACDF) is cage subsidence and maintenance of disc height affects postoperative clinical outcomes. We considered cage subsidence as an inappropriate indicator for evaluating preservation of disc height. Thus, this study aimed to consider patients with complications such as reduced total disc height compared to that before surgery and evaluate the relevance of several factors before ACDF. Methods : We retrospectively reviewed the medical records of 40 patients who underwent stand-alone single-level ACDF using a polyetheretherketone (PEEK) cage at our institution between January 2012 and December 2018. Our study population comprised 19 male and 21 female patients aged 24-70 years. The minimum follow-up period was 1 year. Twenty-seven patients had preoperative bone mineral density (BMD) data on dual-energy X-ray absorptiometry. Clinical parameters included sex, age, body mass index, smoking history, and prior medical history. Radiologic parameters included the C2-7 cobb angle, segmental angle, sagittal vertical axis, disc height, and total intervertebral height (TIH) at the preoperative and postoperative periods. Cage decrement was defined as the reduction in TIH at the 6-month follow-up compared to preoperative TIH. To evaluate the bone quality, Hounsfield unit (HU) value was calculated in the axial and sagittal images of conventional computed tomography. Results : Lumbar BMD values and cervical HU values were significantly correlated (r=0.733, p<0.001). We divided the patients into two groups based on cage decrement, and 47.5% of the total patients were regarded as cage decrement. There were statistically significant differences in the parameters of measuring the HU value of the vertebra and intraoperative distraction between the two groups. Using these identified factors, we performed a receiver operating characteristic (ROC) curve analysis. Based on the ROC curve, the cut-off point was 530 at the HU value of the upper cortical and cancellous vertebrae (p=0.014; area under the curve [AUC], 0.727; sensitivity, 94.7%; specificity, 42.9%) and 22.41 at intraoperative distraction (p=0.017; AUC, 0.722; sensitivity, 85.7%; specificity, 57.9%). Using this value, we converted these parameters into a bifurcated variable and assessed the multinomial regression analysis to evaluate the risk factors for cage decrement in ACDF. Intraoperative distraction and HU value of the upper vertebral body were independent factors of postoperative subsidence. Conclusion : Insufficient intraoperative distraction and low HU value showed a strong relationship with postoperative intervertebral height reduction following single stand-alone PEEK cage ACDF.

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

Detection of Proximal Caries Lesions with Deep Learning Algorithm (심층학습 알고리즘을 활용한 인접면 우식 탐지)

  • Hyuntae, Kim;Ji-Soo, Song;Teo Jeon, Shin;Hong-Keun, Hyun;Jung-Wook, Kim;Ki-Taeg, Jang;Young-Jae, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.131-139
    • /
    • 2022
  • This study aimed to evaluate the effectiveness of deep convolutional neural networks (CNNs) for diagnosis of interproximal caries in pediatric intraoral radiographs. A total of 500 intraoral radiographic images of first and second primary molars were used for the study. A CNN model (Resnet 50) was applied for the detection of proximal caries. The diagnostic accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under ROC curve (AUC) were calculated on the test dataset. The diagnostic accuracy was 0.84, sensitivity was 0.74, and specificity was 0.94. The trained CNN algorithm achieved AUC of 0.86. The diagnostic CNN model for pediatric intraoral radiographs showed good performance with high accuracy. Deep learning can assist dentists in diagnosis of proximal caries lesions in pediatric intraoral radiographs.

Percentile-Based Analysis of Non-Gaussian Diffusion Parameters for Improved Glioma Grading

  • Karaman, M. Muge;Zhou, Christopher Y.;Zhang, Jiaxuan;Zhong, Zheng;Wang, Kezhou;Zhu, Wenzhen
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.104-116
    • /
    • 2022
  • The purpose of this study is to systematically determine an optimal percentile cut-off in histogram analysis for calculating the mean parameters obtained from a non-Gaussian continuous-time random-walk (CTRW) diffusion model for differentiating individual glioma grades. This retrospective study included 90 patients with histopathologically proven gliomas (42 grade II, 19 grade III, and 29 grade IV). We performed diffusion-weighted imaging using 17 b-values (0-4000 s/mm2) at 3T, and analyzed the images with the CTRW model to produce an anomalous diffusion coefficient (Dm) along with temporal (𝛼) and spatial (𝛽) diffusion heterogeneity parameters. Given the tumor ROIs, we created a histogram of each parameter; computed the P-values (using a Student's t-test) for the statistical differences in the mean Dm, 𝛼, or 𝛽 for differentiating grade II vs. grade III gliomas and grade III vs. grade IV gliomas at different percentiles (1% to 100%); and selected the highest percentile with P < 0.05 as the optimal percentile. We used the mean parameter values calculated from the optimal percentile cut-offs to do a receiver operating characteristic (ROC) analysis based on individual parameters or their combinations. We compared the results with those obtained by averaging data over the entire region of interest (i.e., 100th percentile). We found the optimal percentiles for Dm, 𝛼, and 𝛽 to be 68%, 75%, and 100% for differentiating grade II vs. III and 58%, 19%, and 100% for differentiating grade III vs. IV gliomas, respectively. The optimal percentile cut-offs outperformed the entire-ROI-based analysis in sensitivity (0.761 vs. 0.690), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 0.639), and AUC (0.671 vs. 0.599) for grade II vs. III differentiations and in sensitivity (0.789 vs. 0.578) and AUC (0.637 vs. 0.620) for grade III vs. IV differentiations, respectively. Percentile-based histogram analysis, coupled with the multi-parametric approach enabled by the CTRW diffusion model using high b-values, can improve glioma grading.

Prediction of 6-Month Mortality Using Pre-Extracorporeal Membrane Oxygenation Lactate in Patients with Acute Coronary Syndrome Undergoing Veno-Arterial-Extracorporeal Membrane Oxygenation

  • Kim, Eunchong;Sodirzhon-Ugli, Nodirbek Yuldashev;Kim, Do Wan;Lee, Kyo Seon;Lim, Yonghwan;Kim, Min-Chul;Cho, Yong Soo;Jung, Yong Hun;Jeung, Kyung Woon;Cho, Hwa Jin;Jeong, In Seok
    • Journal of Chest Surgery
    • /
    • v.55 no.2
    • /
    • pp.143-150
    • /
    • 2022
  • Background: The effectiveness of extracorporeal membrane oxygenation (ECMO) for patients with refractory cardiogenic shock or cardiac arrest is being established, and serum lactate is well known as a biomarker of end-organ perfusion. We evaluated the efficacy of pre-ECMO lactate for predicting 6-month survival in patients with acute coronary syndrome (ACS) undergoing ECMO. Methods: We reviewed the medical records of 148 patients who underwent veno-arterial (VA) ECMO for ACS between January 2015 and June 2020. These patients were divided into survivors and non-survivors based on 6-month survival. All clinical data before and during ECMO were compared between the 2 groups. Results: Patients' mean age was 66.0±10.5 years, and 116 (78.4%) were men. The total survival rate was 45.9% (n=68). Cox regression analysis showed that the pre-ECMO lactate level was an independent predictor of 6-month mortality (hazard ratio, 1.210; 95% confidence interval [CI], 1.064-1.376; p=0.004). The area under the receiver operating characteristic curve of pre-ECMO lactate was 0.64 (95% CI, 0.56-0.72; p=0.002; cut-off value=9.8 mmol/L). Kaplan-Meier survival analysis showed that the cumulative survival rate at 6 months was significantly higher among patients with a pre-ECMO lactate level of 9.8 mmol/L or less than among those with a level exceeding 9.8 mmol/L (57.3% vs. 31.8%, p=0.0008). Conclusion: A pre-ECMO lactate of 9.8 mmol/L or less may predict a favorable outcome at 6 months in ACS patients undergoing VA-ECMO. Further research aiming to improve the accuracy of predictions of reversibility in patients with high pre-ECMO lactate levels is essential.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

Influence of kilovoltage- peak and the metal artifact reduction tool in cone-beam computed tomography on the detection of bone defects around titanium-zirconia and zirconia implants

  • Fontenele, Rocharles Cavalcante;Nascimento, Eduarda Helena Leandro;Imbelloni-Vasconcelos, Ana Catarina;Martins, Luciano Augusto Cano;Pontual, Andrea dos Anjos;Ramos-Perez, Flavia Maria Moraes;Freitas, Deborah Queiroz
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.267-273
    • /
    • 2022
  • Purpose: The aim of this study was to assess the influence of kilovoltage- peak (kVp) and the metal artifact reduction (MAR) tool on the detection of buccal and lingual peri-implant dehiscence in the presence of titanium-zirconia (Ti-Zr) and zirconia (Zr) implants in cone-beam computed tomography (CBCT) images. Materials and Methods: Twenty implant sites were created in the posterior region of human mandibles, including control sites (without dehiscence) and experimental sites (with dehiscence). Individually, a Ti-Zr or Zr implant was placed in each implant site. CBCT scans were performed using a Picasso Trio device, with variation in the kVp setting (70 or 90 kVp) and whether the MAR tool was used. Three oral radiologists scored the detection of dehiscence using a 5-point scale. The area under the receiver operating characteristic (ROC) curve, sensitivity, and specificity were calculated and compared by multi-way analysis of variance (α=0.05). Results: The kVp, cortical plate involved (buccal or lingual cortices), and MAR did not influence any diagnostic values (P>0.05). The material of the implant did not influence the ROC curve values(P>0.05). In contrast, the sensitivity and specificity were statistically significantly influenced by the implant material (P<0.05) with Zr implants showing higher sensitivity values and lower specificity values than Ti-Zr implants. Conclusion: The detection of peri-implant dehiscence was not influenced by kVp, use of the MAR tool, or the cortical plate. Greater sensitivity and lower specificity were shown for the detection of peri-implant dehiscence in the presence of a Zr implant.