• 제목/요약/키워드: receding contact

검색결과 31건 처리시간 0.034초

A receding contact problem of a layer resting on a half plane

  • Karabulut, Pembe Merve;Adiyaman, Gokhan;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.505-513
    • /
    • 2017
  • In this paper, a receding contact problem for an elastic layer resting on a half plane is considered. The layer is pressed by two rectangular stamps placed symmetrically. It is assumed that the contact surfaces are frictionless and only compressive traction can be transmitted through the contact surfaces. In addition the effect of body forces is neglected. Firstly, the problem is solved analytically based on theory of elasticity. In this solution, the problem is reduced into a system of singular integral equations in which half contact length and contact pressures are unknowns using boundary conditions and integral transform techniques. This system is solved numerically using Gauss-Jacobi integral formulation. Secondly, two dimensional finite element analysis of the problem is carried out using ANSYS. The dimensionless quantities for the contact length and the contact pressures are calculated under various stamp size, stamp position and material properties using both solutions. The analytic results are verified by comparison with finite element results.

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

Tomographic PIV measurement of internal complex flow of an evaporating droplet with non-uniformly receding contact lines

  • Kim, Hyoungsoo;Belmiloud, Naser;Mertens, Paul W.
    • 한국가시화정보학회지
    • /
    • 제14권2호
    • /
    • pp.31-39
    • /
    • 2016
  • We investigate an internal flow pattern of an evaporating droplet where the contact line non-uniformly recedes. By using tomographic Particle Image Velocimetry, we observe a three-dimensional azimuthal vortex pair that is maintained until the droplet is completely dried. The non-uniformly receding contact line motion breaks the flow symmetry. Finally, a simplified scaling model presents that the mechanical stress along the contact line is proportional to the vorticity magnitude, which is validated by the experimental results.

Analytical and finite element solution of a receding contact problem

  • Adiyaman, Gokhan;Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제54권1호
    • /
    • pp.69-85
    • /
    • 2015
  • In this paper, a receding contact problem for an elastic layer resting on two quarter planes is considered. The layer is pressed by a stamp and distributed loads. It is assumed that the contact surfaces are frictionless and only compressive traction can be transmitted through the contact surfaces. In addition the effect of body forces are neglected. Firstly, the problem is solved analytically based on theory of elasticity. In this solution, the problem is reduced into a system of singular integral equations in which contact areas and contact stresses are unknowns using boundary conditions and integral transform techniques. This system is solved numerically using Gauss-Jacobi integral formulation. Secondly, two dimensional finite element analysis of the problem is carried out using ANSYS. The dimensionless quantities for the contact areas and the contact pressures are calculated under various distributed load conditions using both solutions. It is concluded that the position and the magnitude of the distributed load have an important role on the contact area and contact pressure distribution between layer and quarter plane contact surface. The analytic results are verified by comparison with finite element results.

On the receding contact plane problem for bi-FGM-layers indented by a flat indenter

  • Cong Wang;Jie Yan;Rui Cao
    • Structural Engineering and Mechanics
    • /
    • 제85권5호
    • /
    • pp.621-633
    • /
    • 2023
  • The major objective of this paper is to study the receding contact problem between two functional graded layers under a flat indenter. The gravity is assumed negligible, and the shear moduli of both layers are assumed to vary exponentially along the thickness direction. In the absence of body forces, the problem is reduced to a system of Fredholm singular integral equations with the contact pressure and contact size as unknowns via Fourier integral transform, which is transformed into an algebraic one by the Gauss-Chebyshev quadratures and polynomials of both the first and second kinds. Then, an iterative speediest descending algorithm is proposed to numerically solve the system of algebraic equations. Both semi-analytical and finite element method, FEM solutions for the presented problem validate each other. To improve the accuracy of the numerical result of FEM, a graded FEM solution is performed to simulate the FGM mechanical characteristics. The results reveal the potential links between the contact stress/size and the indenter size, the thickness, as well as some other material properties of FGM.

The receding contact problem of two elastic layers supported by two elastic quarter planes

  • Yaylaci, Murat;Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제48권2호
    • /
    • pp.241-255
    • /
    • 2013
  • The receding contact problem for two elastic layers whose elastic constants and heights are different supported by two elastic quarter planes is considered. The lower layer is supported by two elastic quarter planes and the upper elastic layer is subjected to symmetrical distributed load whose heights are 2a on its top surface. It is assumed that the contact between all surfaces is frictionless and the effect of gravity force is neglected. The problem is formulated and solved by using Theory of Elasticity and Integral Transform Technique. The problem is reduced to a system of singular integral equations in which contact pressures are the unknown functions by using integral transform technique and boundary conditions of the problem. Stresses and displacements are expressed depending on the contact pressures using Fourier and Mellin formula technique. The singular integral equation is solved numerically by using Gauss-Jacobi integration formulation. Numerical results are obtained for various dimensionless quantities for the contact pressures and the contact areas are presented in graphics and tables.

평판 위에서 움직이는 물방울에 대한 분자동역학 시뮬레이션 (A molecular dynamics simulation for the moving water droplet on a solid surface)

  • 홍승도;하만영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1891-1895
    • /
    • 2008
  • Water covers 70% of the earth's surface and the human body consist of 75% of it. It is clear that water is one of the prime elements responsible for life on earth. Over the last 30 years or so, numerous studies have attempted to find out more about the water microscopically. In this paper, we investigated how the receding and advancing contact angle of the moving water droplet changes on a solid surface having various LJ epsilon parameters. To observe the dynamic contact angle history, a body force applied to all water molecules after obtained the water droplet in equilibrium with the solid surface. We obtained the density profile and receding and advancing contact angle of the moving water droplet

  • PDF

액적 충돌에 동반된 열전달에 관한 수치적 연구 (Numerical Study of Heat Transfer Associated with Droplet Impact)

  • 김성일;손기현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1897-1902
    • /
    • 2004
  • Numerical analysis of the heat transfer associated with droplet impact on a hot solid surface is performed by solving the mass, momentum and energy equations for the liquid-gas region. The deformed droplet shape is tracked by a level set method which is modified to achieve volume conservation during the whole calculation procedure and to include the effect of contact angle at the wall. The numerical method is validated through test calculations for the cases reported in the literature. Based on the numerical results, the effects of advancing/receding contact angle, impact velocity and droplet size on the heat transfer during droplet impact are quantified.

  • PDF

원자적으로 균일한 평판 위에서 움직이는 물 액적에 대한 분자동역학 시뮬레이션 (A Molecular Dynamics Simulation for the Moving Water Droplet on Atomistically Smooth Solid Surface)

  • 홍승도;하만영
    • 대한기계학회논문집B
    • /
    • 제33권8호
    • /
    • pp.559-564
    • /
    • 2009
  • The variation in the shape of water droplet moving on atomistically smooth solid surface in the presence of a constant body force is simulated using molecular dynamics simulation. We investigated how the advancing and receding contact angle of the moving water droplet changes on a solid surface having various characteristic energies. From the MD simulation results, we obtained the density profile defined as the number of water molecules at a given position. Then, assuming the water droplet periphery to be a circle, we calculated the contact angles by using a nonlinear fitting of the half-density contour line. The present simulation clearly shows the different profile of the advancing and receding contact angle for these three different interaction potential between the water droplet and the solid surface.

접촉각측정에 의한 표면의 특성연구 - I. 레이저광선 투영에 의한 접촉각의 측정방법- (Characterization of Surfaces by Contact Angle Goniometry - I. Contact Angle Measurement by Laser Beam Projection-)

  • 박정희
    • 한국의류학회지
    • /
    • 제15권1호
    • /
    • pp.70-75
    • /
    • 1991
  • 본 연구에서는 레이저광선의 투영을 이용한 접촉각측정기구가 개발되었다. 이 새로운 방법은 편평한 표면분만 아니라 직격이 가는 섬유를 포함한 굴곡진 표면에서는 stationary, advancing그리고 receding contact angle-을 신속하고 정확하게 측정할 수 있게 하여 준다. 가는 레이저광선이 액체와 고체사이 계면의 끝을 통과하여 tangent screen의 각도를 재는 눈금상에 중심으로부터 방사상으로 두개의 선이 나타나게 된다. 이때 눈금상에 투영된 두개의 레이저광선 사이의 각도를 접촉각으로 결정한다. 이 새로운 기구를 사용한 결과, PMMA(Perspex-CQ)상에서의 접촉각은 문헌상의 접촉각과 일치함으로써 간편하고 정확한 접촉각 측정법임을 입증할 수 있었다.

  • PDF