• 제목/요약/키워드: rebound hardness test

검색결과 33건 처리시간 0.024초

부가응력과 반발경도와의 관계 (The Relation between Applied Stress and Rebound Hardness Values)

  • 남승훈;김시천;전승범
    • 열처리공학회지
    • /
    • 제8권4호
    • /
    • pp.318-325
    • /
    • 1995
  • Information of change of hardness values during applying load is needed often to control the quality of metal products efficiently, but the relation between applied stress and hardness has not been established. In this paper the theoretical relation between the rebound hardness and stress was examined briefly and the experiment was performed with some materials. Materials used in test were mild steel(SB41), 7-3 brass and copper, which were widely used in the commercial plants. Hardness was measured during stress applied using the Equo-Tip hardness tester as a kind of rebound hardness tester. Hardness values decreased as tensile stress increased, the decreasing rate was effected by the Young's modulus of each material, and the rebound hardness values showed linear relationship with the applied stress in elastic region.

  • PDF

Estimation of Compressive Strength of Reinforced Concrete Structure Using Impact Testing Method and Rebound Hardness Method

  • Hong, Seonguk;Kim, Seunghun;Lee, Yongtaeg;Jeong, Jaewon;Lee, Changyong;Park, Chanwoo
    • Architectural research
    • /
    • 제20권4호
    • /
    • pp.137-145
    • /
    • 2018
  • The nondestructive test is widely used in the field of diagnosis and maintenance to evaluate the degree of damaging of structures caused by aging, and the demand for this test method is expected to continue increasing. However, there is a lack of standards related to the nondestructive test, and South Korea is relying heavily on developed nations for original technologies related to diagnosis. It is an urgent task to establish a nondestructive test method appropriate for the circumstance of South Korea. The purpose of this study is to compare and analyze estimated error of compressive strength in single-story structures comprised of vertical and horizontal reinforced concrete members using the impact testing method and rebound hardness method, which are nondestructive test methods, and to review on-site applicability of these methods. Based on compressive strength of the structures estimated, overall mean error was 21.2% for the impact testing method and 15.6% for the rebound hardness method. The necessity of a reliable diagnostic method based on compound nondestructive test methods to increase accuracy of estimation was confirmed.

도시철도 지하구조물 압축강도와 반발경도의 상관관계에 관한 연구 (A Study on Correlation between Compressive Strength and Rebound Hardness of Urban Underground Structures)

  • 최정열;이수재;정지승
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.655-661
    • /
    • 2020
  • 본 연구에서는 도시철도 지하구조물을 대상으로 동일위치에서의 콘크리트 코어채취 압축강도와 비파괴시험 반발경도를 측정하여 반발경도 범위별 추정식을 도출하고 반발경도 구간별 실측 콘크리트 코어강도와의 비교를 통해 범위에 따른 추정 압축강도의 적정성을 확인하였다. 연구결과, 가우시안 확률밀도 함수를 이용하여 산출한 반발경도 범위별 평균 압축강도의 선형회귀분석 결과(대표 압축강도 추정식)와 반발경도 범위별 추정식은 실측 콘크리트 코어압축강도 실험결과와 약 3% 이내로 잘 일치하는 것으로 나타났다. 본 연구의 반발경도 범위별 압축강도 추정결과는 추정 압축강도의 오차를 줄이고 높은 신뢰수준을 확보할 수 있을 것으로 분석되었다. 따라서 본 연구에서 제안한 반발경도 측정결과를 이용한 확률적 통계분석결과는 추정식에 따라 상대적으로 편차가 크게 나타나는 반발경도와 콘크리트 압축강도간의 상관관계의 신뢰수준을 확보하는 데에 도움이 될 수 있을 것으로 판단된다.

반발경도법을 이용한 LNG 저장탱크 콘크리트의 압축강도 추정식 개발 (The Development of Compressive Strength Estimation Equation for LNG Storage Tank using Rebound Hardness Method)

  • 김정훈;김영구;조영도
    • 한국가스학회지
    • /
    • 제21권3호
    • /
    • pp.26-32
    • /
    • 2017
  • LNG 저장탱크의 외조 콘크리트는 방호벽 기능을 하는 프리스트레스 콘크리트 구조물이다. 콘크리트 구조물이 열화가 되어 안전성이 확보되지 않는 경우 구조물 붕괴 등의 위험성이 존재하게 된다. 정밀안전진단시 비파괴검사로 반발경도 및 초음파 속도 측정을 통해 구조물의 안전성과 직접적으로 관련되어 있는 콘크리트 압축강도를 추정식으로 예측할 수 있다. 그러나, LNG 저장탱크는 비파괴검사 데이터와 실제 압축강도에 대한 추정식이 부재하다. 이 연구는 LNG 저장탱크에 대해 보다 정확한 실제 강도를 측정하기 위해 Pilot LNG 저장탱크벽체로부터 코어를 채취하였다. 코어를 채취하기 전 해당위치에 일반적인 비파괴시험 방법인 반발경도 검사를 4개의 다른 영역에 각 3군데 위치에서 이루어졌다. 채취한 콘크리트 코어에 대해 압축강도 시험결과의 실제 압축강도 데이터와 반발경도 데이터를 이용하여 LNG 저장탱크의 압축강도 추정식을 개발하였다.

콘크리트의 탄산화가 반발도에 미치는 영향에 관한 연구 (A Study on the Effect of Carbonation on the Rebound Numbers)

  • 유성현;전명훈;윤상천;지남용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.783-786
    • /
    • 1999
  • The compressive strength of concrete is one of the most important properties in concrete structures. There are, two methods for the testing of concrete compressive strength in structure ; coring and nondestructive testing. The latter is more often used than the former in a view of time and expenses. The Nondestructive test methods used nowadays include Rebound Hammer test and Ultrasonic Pulse Velocity test. Carbonation through aging makes changes of the interior structure and the properties of concrete. It is well-known fact that the surface hardness of concrete is increased by its carbonation. This fact makes it difficult in estimating the compressive strength of concrete using Rebound Hammer test. This study aimed to quantitatively analyzed the effects of carbonation on results of the Rebound Hammer test.

  • PDF

표면반발경도를 활용한 물-시멘트비별 콘크리트의 동결융해 손상 평가 (Evaluating the Freeze-Thaw Damage of Concrete with Respect to Water to Cement Ratio Using Surface Rebound Value)

  • 박지선;안기홍;유영준;이종석
    • 한국건설순환자원학회논문집
    • /
    • 제10권2호
    • /
    • pp.143-151
    • /
    • 2022
  • 동결융해에 의한 콘크리트 손상 발생 시기를 평가하기 위하여 상대동탄성계수와 표면반발경도를 이용하여 비교하였다. 비교 결과 W/C 70 실험체군에서는 표면반발경도에 의한 콘크리트 손상 발생 평가가 200 싸이클 이상 빠르게 나타나는 것으로 관찰되었다. 뿐만 아니라 이후 점점 심해지는 동해를 표현할 수 있는 데이터를 지속적으로 제공해주어 동해 발생하는 초기 시점부터 동해를 확인할 수 있다는 것을 나타냈다. W/C 60과 50 실험체군에서도 표면반발경도가 콘크리트 동해 손상을 상대동탄성계수 보다 빠르게 평가했으며, 물-시멘트비에 변화에 상관없이 전반적으로 동결융해 손상시기 상대적으로 빠르고 정확하게 평가한 것으로 판단된다.

일방향 철근 콘크리트 슬래브의 폭발 피해 분석을 위한 최적의 비파괴검사법에 관한 연구 (The Study on the Optimal NDT Method for the Explosion Damage Analysis for One-way RC Slabs)

  • 이승재;오태근;박종일;김희식
    • 한국안전학회지
    • /
    • 제32권5호
    • /
    • pp.62-68
    • /
    • 2017
  • It is necessary to analyze on the compressive strength among material properties of concrete for confirming damages of architectures due to large explosion. A non destructive test is known as the representative methods estimating compressive strength and ultrasonic pulse velocity, rebound hardness test are widely used because of their simplicity, convenience. But combined method supplementing two types is applied at now as they are affected by the characteristics of test specimen. In this research to check damages on the members of structure before and after explosion, the characteristics of compressive strength are compared and analyzed through a real explosion test prior to full scale structures. The test results showed that the larger the TNT powder and the shorter the distance, the greater the decrease in strength before and after the explosion and that the largest displacement and moment for the explosive load and the greatest decrease in the strength at the central part. Due to the surface condition and the thickness variation of the concrete specimens, the standard deviation value is the smallest in the combining method of fusion of the ultrasonic method and rebound hardness method. Thus, the combining method can be one of appropriate methods to evaluate the strength in the reinforced concrete structures damaged by the explosion.

절취사면의 암질평가사례 (Case Study of Rock Mass Classifications in Slopes)

  • 신희순;한공창;선우춘;송원경;신중호;박찬
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.109-116
    • /
    • 2000
  • Rippability refers to the ease of excavation by construction equipment. Since it is related to rock quality in terms of hardness and fracture density, which may be measured by seismic refraction surveys, correlations have been made between rippability and seismic P wave velocities. The 1-channel signal enhancement seismograph(Bison, Model 1570C) was used to measure travel time of the seismic wave through the ground, from the source to the receiver. The seismic velocity measurement was conducted with 153 lines at 5 rock slopes of Chungbuk Youngdong area. Schmidt rebound hardness test were conducted with 161 points on rock masses and the point load test also on 284 rock samples. The uniaxial compressive strength and seismic wave velocity of 60 rock specimens were measured in laboratory. These data were used to evaluate the rock quality of 5 rock slopes.

  • PDF

반발 경도법의 고강도 콘크리트 적용성 검토 (A Study on application of High Strength Concrete by Non-Destructive Test)

  • 김희두;임성주;박용규;김현우;윤기원;양성환
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.69-70
    • /
    • 2013
  • This is an foundational study to adequacy the non-destruction testing for the estimation of compressive strength of high strength concrete The results are as follows, In high strength concrete, H type is NR type rebound number rather than higher. The relation between rebound number and compressive strength of high strength concrete have lower coefficient. when compressive strength estimation of high strength concrete, it consider that rebound hardness test is not applied and should be consider to combined method or addition method.

  • PDF

비파괴 및 재하시험에 의한 노후 교량의 거동특성 (Behavior Properties of Bridge by Non Destructive and Loading Test)

  • 민정기;김영익
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.61-71
    • /
    • 2004
  • The performance evaluation and deflection of 3 spans concrete simplicity slab bridge analyzed by non-destructive and loading test. Compressive strength of slab and pier appeared in the range of each 353∼366 kgf/$cm^2$ and 152∼215 kgf/$cm^2$ in rebound number test. Also, it appeared that concrete quality of slab was good after performance improvement. The average compressive strength of slab by core picking appeared 229 kg/$cm^2$. In reinforcing bar arrangement test of span and member, it appeared that horizontal and vertical reinforcing bar was arranged to fixed interval. The value of calculation deflection that carried structural analysis with deflection analysis wave in static loading test appeared higher than that of experimental deflection and it appeared that hardness of this bridge was good. Maximum impact factor that estimated from deflection by running speed in dynamic loading test appeared by 0.216 in 10 km/hr running speed.