• Title/Summary/Keyword: reasoning model

Search Result 591, Processing Time 0.027 seconds

Sensor placement driven by a model order reduction (MOR) reasoning

  • Casciati, Fabio;Faravelli, Lucia
    • Smart Structures and Systems
    • /
    • v.13 no.3
    • /
    • pp.343-352
    • /
    • 2014
  • Given a body undergoing a stress-strain status as consequence of external excitations, sensors can be deployed on the accessible lateral surface of the body. The sensor readings are regarded as input of a numerical model of reduced order (i.e., the number of sensors is lower than the number of the state variables the full model would require). The goal is to locate the sensors in such a way to minimize the deviations from the response of the true (full) model. One adopts either accelerometers as sensors or devices reading relative displacements. Two applications are studied: a plane frame is first investigated; the focus is eventually on a 3D body.

THE MULTI-PROJECTIVE MODEL: AN OBJECT-ORIENTED LOGICAL MODEL

  • Roh, TaeHo;Choi, Insoo
    • Management Science and Financial Engineering
    • /
    • v.7 no.1
    • /
    • pp.27-39
    • /
    • 2001
  • The multi-projective model considers attributes and the relationships among attributes called projections. The critical features of the multi-projective model are the way of relating attributes in the description of the system, the way of reasoning incomplete projections, and the determination of connected patterns between projection. In order to get a full picture of the system, we build a set of projections. The multi-projective model can be thought of as projections of a multi-dimensional reality onto simplified “model space”. The multi-projective database modeling approach used in this paper unified the ideas and terminology of various database models. Most importantly, the multi-projective modeling is presented as a tool of database design in the relational and other database models.

  • PDF

Knowledge Based and Object-Oriented Simulation Model for Logistics Analysis (지식기반 객체지향 군수시뮬레이션 모델에 관한 연구 - 초기군수지원성 분석모델을 중심으로 -)

  • 마호명;최상영
    • Journal of the military operations research society of Korea
    • /
    • v.22 no.1
    • /
    • pp.67-80
    • /
    • 1996
  • Artificial Intelligence(AI) techniques and Object-Oriented(OO) techniques contribute to the simulation modeling of the complex systems. AI techniques are suitable to model human reasoning in the simulation. While OO techniques have advantages of re-usability, maintainability and extendability of the software. Thus, in this paper, we design a knowledge-based object-oriented simulation model, particularly for the logistics analysis of military armor vehicles. The simulation model consists of three modules i.e., scenario, simulation mechanism, and inference engine. The model is designed within the OO paradigm and implemented by using the C++ language. An example case of using the model for the logistic analysis is included.

  • PDF

Context Prediction Using Right and Wrong Patterns to Improve Sequential Matching Performance for More Accurate Dynamic Context-Aware Recommendation (보다 정확한 동적 상황인식 추천을 위해 정확 및 오류 패턴을 활용하여 순차적 매칭 성능이 개선된 상황 예측 방법)

  • Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.19 no.3
    • /
    • pp.51-67
    • /
    • 2009
  • Developing an agile recommender system for nomadic users has been regarded as a promising application in mobile and ubiquitous settings. To increase the quality of personalized recommendation in terms of accuracy and elapsed time, estimating future context of the user in a correct way is highly crucial. Traditionally, time series analysis and Makovian process have been adopted for such forecasting. However, these methods are not adequate in predicting context data, only because most of context data are represented as nominal scale. To resolve these limitations, the alignment-prediction algorithm has been suggested for context prediction, especially for future context from the low-level context. Recently, an ontological approach has been proposed for guided context prediction without context history. However, due to variety of context information, acquiring sufficient context prediction knowledge a priori is not easy in most of service domains. Hence, the purpose of this paper is to propose a novel context prediction methodology, which does not require a priori knowledge, and to increase accuracy and decrease elapsed time for service response. To do so, we have newly developed pattern-based context prediction approach. First of ail, a set of individual rules is derived from each context attribute using context history. Then a pattern consisted of results from reasoning individual rules, is developed for pattern learning. If at least one context property matches, say R, then regard the pattern as right. If the pattern is new, add right pattern, set the value of mismatched properties = 0, freq = 1 and w(R, 1). Otherwise, increase the frequency of the matched right pattern by 1 and then set w(R,freq). After finishing training, if the frequency is greater than a threshold value, then save the right pattern in knowledge base. On the other hand, if at least one context property matches, say W, then regard the pattern as wrong. If the pattern is new, modify the result into wrong answer, add right pattern, and set frequency to 1 and w(W, 1). Or, increase the matched wrong pattern's frequency by 1 and then set w(W, freq). After finishing training, if the frequency value is greater than a threshold level, then save the wrong pattern on the knowledge basis. Then, context prediction is performed with combinatorial rules as follows: first, identify current context. Second, find matched patterns from right patterns. If there is no pattern matched, then find a matching pattern from wrong patterns. If a matching pattern is not found, then choose one context property whose predictability is higher than that of any other properties. To show the feasibility of the methodology proposed in this paper, we collected actual context history from the travelers who had visited the largest amusement park in Korea. As a result, 400 context records were collected in 2009. Then we randomly selected 70% of the records as training data. The rest were selected as testing data. To examine the performance of the methodology, prediction accuracy and elapsed time were chosen as measures. We compared the performance with case-based reasoning and voting methods. Through a simulation test, we conclude that our methodology is clearly better than CBR and voting methods in terms of accuracy and elapsed time. This shows that the methodology is relatively valid and scalable. As a second round of the experiment, we compared a full model to a partial model. A full model indicates that right and wrong patterns are used for reasoning the future context. On the other hand, a partial model means that the reasoning is performed only with right patterns, which is generally adopted in the legacy alignment-prediction method. It turned out that a full model is better than a partial model in terms of the accuracy while partial model is better when considering elapsed time. As a last experiment, we took into our consideration potential privacy problems that might arise among the users. To mediate such concern, we excluded such context properties as date of tour and user profiles such as gender and age. The outcome shows that preserving privacy is endurable. Contributions of this paper are as follows: First, academically, we have improved sequential matching methods to predict accuracy and service time by considering individual rules of each context property and learning from wrong patterns. Second, the proposed method is found to be quite effective for privacy preserving applications, which are frequently required by B2C context-aware services; the privacy preserving system applying the proposed method successfully can also decrease elapsed time. Hence, the method is very practical in establishing privacy preserving context-aware services. Our future research issues taking into account some limitations in this paper can be summarized as follows. First, user acceptance or usability will be tested with actual users in order to prove the value of the prototype system. Second, we will apply the proposed method to more general application domains as this paper focused on tourism in amusement park.

Automatic GA fuzzy modeling with fine tuning method

  • Son, You-Seok;Chang, Wook;Park, Jin-Bae;Joo, Young-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.189-192
    • /
    • 1996
  • This paper presents a systematic approach to identify a linguistic fuzzy model for a multi-input and single-output complex system. Such a model is composed of fuzzy rules, and its output is inferred by the simplified reasoning. The structure and membership function parameters for a fuzzy model are automatically and simultaneously identified by GA (Genetic Algorithm). After GA search, optimal parameters for the fuzzy model are finely tuned by a gradient method. A numerical example is provided to evaluate the feasibility of the proposed approach. Comparison shows that the suggested approach can produce the linguistic fuzzy model with higher accuracy and a smaller number of rules than the ones achieved previously in other methods.

  • PDF

A Fuzzy Model Based on the PNN Structure

  • Sang, Rok-Soo;Oh, Sung-Kwun;Ahn, Tae-Chon;Hur, Kul
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.83-86
    • /
    • 1998
  • In this paper, a fuzzy model based on the Polynomial Neural Network(PNN) structure is proposed to estimate the emission pattern for air pollutant in power plants. the new algorithm uses PNN algorithm based on Group Mehtod of Data Handling (GMDH) algorithm and fuzzy reasoning in order to identify the premise structure and parameter of fuzzy implications rules, and the least square method in order to identify the optimal consequence parameters. Both time series data for the gas furnace and data for the NOx emission process of gas turbine power plants are used for the purpose of evaluating the performance of the fuzzy model. The simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

Bayesian Model for Cost Estimation of Construction Projects

  • Kim, Sang-Yon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.1
    • /
    • pp.91-99
    • /
    • 2011
  • Bayesian network is a form of probabilistic graphical model. It incorporates human reasoning to deal with sparse data availability and to determine the probabilities of uncertain cases. In this research, bayesian network is adopted to model the problem of construction project cost. General information, time, cost, and material, the four main factors dominating the characteristic of construction costs, are incorporated into the model. This research presents verify a model that were conducted to illustrate the functionality and application of a decision support system for predicting the costs. The Markov Chain Monte Carlo (MCMC) method is applied to estimate parameter distributions. Furthermore, it is shown that not all the parameters are normally distributed. In addition, cost estimates based on the Gibbs output is performed. It can enhance the decision the decision-making process.

Simulator Output Knowledge Analysis Using Neural network Approach : A Broadand Network Desing Example

  • Kim, Gil-Jo;Park, Sung-Joo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1994.10a
    • /
    • pp.12-12
    • /
    • 1994
  • Simulation output knowledge analysis is one of problem-solving and/or knowledge adquistion process by investgating the system behavior under study through simulation . This paper describes an approach to simulation outputknowldege analysis using fuzzy neural network model. A fuzzy neral network model is designed with fuzzy setsand membership functions for variables of simulation model. The relationship between input parameters and output performances of simulation model is captured as system behavior knowlege in a fuzzy neural networkmodel by training examples form simulation exepreiments. Backpropagation learning algorithms is used to encode the knowledge. The knowledge is utilized to solve problem through simulation such as system performance prodiction and goal-directed analysis. For explicit knowledge acquisition, production rules are extracted from the implicit neural network knowledge. These rules may assit in explaining the simulation results and providing knowledge base for an expert system. This approach thus enablesboth symbolic and numeric reasoning to solve problem througth simulation . We applied this approach to the design problem of broadband communication network.

  • PDF

Fuzzy Cognitive Map Construction Support System based on User Interaction (사용자 상호작용에 의한 퍼지 인식도 구축 지원 시스템)

  • Shin, Hyoung-Wook;Jung, Jeong-Mun;Cheah, Wooi Ping;Yang, Hyung-Jeong;Kim, Kyoung-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.12
    • /
    • pp.1-9
    • /
    • 2008
  • Fuzzy Cognitive Map, one of ways to model, describe and infer reasoning relations, is widely used in the field of reasoning knowledge engineering. Despite of the natural and easy understanding of decision and smooth explanation of relation between front and rear, reasoning relation is organized with mathematical haziness and complex algorithm and rarely has an interactive user interface. This paper suggests an interactive Fuzzy Cognitive Map(FCM) construction support system. It builds a FCM increasingly concerning multiple experts' knowledge. Futhermore, it supports user-supportive environment by dynamically displaying the structure of Fuzzy Cognitive Map which is constructed by the interaction between experts and the system.

Development and Evaluation of a Problem-based Learning in Nursing Management and Ethics ('간호관리 및 윤리' 교과목의 문제중심학습 패키지 개발 및 평가)

  • Kim, In-Sook;Chung, Ja-Ne;Kim, Eun-Hyeon;Lee, Tae-Wha
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.13 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • Purpose: This study was aimed to develop and evaluate of a Problem-based Learning (PBL) in the course of Nursing Management and Ethics. Method: The design of the study was both methodological and one group only pre-post design. The sample included 61 senior students who are currently enrolled in Nursing management and Ethics course in college of nursing. Data regarding PBL evaluation were collected on the critical thinking and clinical reasoning using structured questionnaires during March to June, 2005. Data were analyzed using descriptives and paired t-test. Results: A total of three PBL packages was developed by the two faculty members and two teaching assistants who are majoring in nursing management. PBL packages that had been developed was applied to 61 senior students for three months. Critical thinking and clinical reasoning were measured twice pre and post the application of PBL packages. There were statistically significant differences in the critical thinking and clinical reasoning between the pre and post PBL application. Conclusion: PBL was considered to be effective in understanding the learning concepts in the Nursing Management and Ethics. Further research on the facilitative strategies and development model considering the characteristics of Nursing Management and Ethics course is needed.

  • PDF