• Title/Summary/Keyword: real-world

Search Result 4,158, Processing Time 0.033 seconds

Study on a Connector between Virtual World and Real World (가상세계와 현실세계 사이의 정보전달자에 관한 연구)

  • Hyungjun Seo;Park, Jae-Hee;Heedong Ko
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2003.05a
    • /
    • pp.65-69
    • /
    • 2003
  • The concept of connector is introduced as mediator between virtual environment and real environment. A connector has interest on usefulness in real world while previous interfaces of virtual reality system have focus on virtual world. A functional connector among connectors gives solution if disorientation problem in virtual environment and helps user to take out the knowledge experienced through virtual reality system in real environment. An example of a functional connector is designed and developed. Evaluation of designed and developed. Evaluation of connector will be executed later.

  • PDF

Wearable Input Device for Incorporating Real-World into Virtual Reality (가상현실과 실세계 정합을 위한 웨어러블 입력장치)

  • Park, Ki-Hong;Lee, Hyun-Jik;Kim, Yoon-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.319-325
    • /
    • 2011
  • In this paper, we propose the matching model between virtual reality and the real-world for peoples with limited mobility. The proposed matching model is consist of four parts: wearable input device-based PC control, hand-motion pattern recognition, application software, and matching between virtual reality and the real-world. To recognition mouse functions and hand-motion patterns from six-axis coordinate of wearable input device, RF communication is used. In addition, to easily control the real-world, virtual reality has been implemented with realism of the real-world. Some experiments are conducted so as to verify the proposed model, and as a result, hand-motion recognition as well as virtual reality control are well performed.

A study of contempt characters for storytelling (스토리텔링을 위한 모멸형 케릭터 연구)

  • Lee, Kang-Hyun
    • Journal of Digital Convergence
    • /
    • v.11 no.12
    • /
    • pp.777-784
    • /
    • 2013
  • A novel is a conversation between self and the real world. They are not only sensitive act to the real world, but also a pattern of the real through the converse between self and the real world without making the real his own. This analysis on the works of Son and his essence shows that he tried to express his self-denial aesthetics and human-denial aesthetics as well as self-closing aesthetics.

A Method of Anonymity Authentication using the Public Certificate (공인인증서를 이용한 익명인증 방법)

  • Lee, Young Gyo;Ahn, Jeong Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.1
    • /
    • pp.115-129
    • /
    • 2010
  • As the fixed mobile communication tools using the internet are developed, the off-line services are serviced through on-line on the internet. our society is divided into the real world and the cyber world. In the cyber world, the authentication to the user is absolutely required. The authentication is divided into the real-name authentication and the anonymous authentication by the kind of the internet service provider. There are some ISPs needed the real-name authentication and there are others ISPs needed the anonymity authentication. The research about the anonymity authentication is steadily established to these days. In this paper, we analyze the problem about blind signature, group signature, ring signature, and traceable signature. And we propose a method of anonymity authentication using the public certificate. In the proposal, the anonymity certificate have the new structure and management. Certificate Authority issues several anonymity certificates to a user through the real-name authentication. Several anonymity certificates give non-linked and non-traceability to the attacker.

Low-Cost IoT Sensors for Flow Measurement in Open Channels: A Comparative Study of Laboratory and Field Performance

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.172-172
    • /
    • 2023
  • The use of low-cost IoT sensors for flow measurement in open channels has gained significant attention due to their potential to provide continuous and real-time data at a low cost. However, the accuracy and reliability of these sensors in real-world scenarios are not well understood. This study aims to compare the performance of low-cost IoT sensors in the laboratory and real-world conditions to evaluate their accuracy and reliability. Firstly, a low-cost IoT sensor was integrated with an IoT platform to acquire real-time flow rate data. The IoT sensors were calibrated in the laboratory environment to optimize their accuracy, including different types of low-cost IoT sensors (HC-SR04 ultrasonic sensor & YF-S201 sensor) using an open channel prototype. After calibration, the IoT sensors were then applied to a real-world case study in the Dorim-cheon stream, where they were compared to traditional flow measurement methods to evaluate their accuracy.The results showed that the low-cost IoT sensors provided accurate and reliable flow rate data under laboratory conditions, with an error range of less than 5%. However, when applied to the real-world case study, the accuracy of the IoT sensors decreased, which could be attributed to several factors such as the effects of water turbulence, sensor drift, and environmental factors. Overall, this study highlights the potential of low-cost IoT sensors for flow measurement in open channels and provides insights into their limitations and challenges in real-world scenarios.

  • PDF

Reconstruction of Thermodynamics by the Concept of Available Energy (II) - Thermodynamics of Real World - (가용 에너지에 의한 열역학의 재구성 (II) - 실제세계 열역학 -)

  • Jung, Pyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1573-1581
    • /
    • 2004
  • Thermodynamic principles are described with a new point of view. In present study, the interaction between two systems is focused instead of the behavior of a system in conventional thermodynamics. The state change of a system cannot occur by itself but it is the result of the interaction between systems. However, the interaction itself is also the result of another kind of interaction, the interaction between two interactions. To reconstruct thermodynamics with such a point of view, the reversible world is imagined, in which conservations and measurements are discussed. There exists a conserved quantity for each mode of reversible interaction. The conserved transferring quantity in the interaction between interactions is the effective work, which is supposed to be measurable and conserved in reversible world. Effective work is the primary concepts of energy. It is the key factor to explain measurements, energy conservation and energy dissipation. The concepts developed in reversible world are applied to the real world in which irreversible phenomena may occur. Irreversibility is the result of effective energy dissipation, in which effective work irreversibly changes into entropy. A quantitative relation between the disappearing effective work and the generated entropy is dissipation equation which is given by experiments. A special temperature scale to give a very simple type of the dissipation equation is the absolute temperature scale, which gives the conventional conservation of energy.

Development of an Actor-Critic Deep Reinforcement Learning Platform for Robotic Grasping in Real World (현실 세계에서의 로봇 파지 작업을 위한 정책/가치 심층 강화학습 플랫폼 개발)

  • Kim, Taewon;Park, Yeseong;Kim, Jong Bok;Park, Youngbin;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.197-204
    • /
    • 2020
  • In this paper, we present a learning platform for robotic grasping in real world, in which actor-critic deep reinforcement learning is employed to directly learn the grasping skill from raw image pixels and rarely observed rewards. This is a challenging task because existing algorithms based on deep reinforcement learning require an extensive number of training data or massive computational cost so that they cannot be affordable in real world settings. To address this problems, the proposed learning platform basically consists of two training phases; a learning phase in simulator and subsequent learning in real world. Here, main processing blocks in the platform are extraction of latent vector based on state representation learning and disentanglement of a raw image, generation of adapted synthetic image using generative adversarial networks, and object detection and arm segmentation for the disentanglement. We demonstrate the effectiveness of this approach in a real environment.

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.

Challenges and Real-world Validation of Autonomous Surface Vehicle Decision-making System

  • Mingi Jeong;Arihant Chadda;Alberto Quattrini Li
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.357-359
    • /
    • 2022
  • Autonomous decision-making is key to safe and efficient marine autonomy, as global marine industry comprises over 90 percent of the world's cargo transportation. Challenges of the real-world validation in the aquatic domain limits the wide-spread of ASVs despite their promising societal impacts. We propose and demonstrate the real-world validation platform and comprehensive algorithm steps. Such a framework will serve as a more explainable and reliable decision-making system of ASVs as well as autonomous vehicles in other domains.

  • PDF

DEVELOPMENT OF VIRTUAL PLAYGROUND SYSTEM BY MARKERLESS AUGUMENTED REALITY AND PHYSICS ENGINE

  • Takahashi, Masafumi;Miyata, Kazunori
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.834-837
    • /
    • 2009
  • Augmented Reality (AR) is a useful technology for various industrial systems. This paper suggests a new playground system which uses markerless AR technology. We developed a virtual playground system that can learn physics and kinematics from the physical play of people. The virtual playground is a space in which real scenes and CG are mixed. As for the CG objects, physics of the real world is used. This is realized by a physics engine. Therefore it is necessary to analyze information from cameras, so that CG reflects the real world. Various games options are possible using real world images and physics simulation in the virtual playground. We think that the system is effective for education. Because CG behaves according to physics simulation, users can learn physics and kinematics from the system. We think that the system can take its place in the field of education through entertainment.

  • PDF