• Title/Summary/Keyword: real-time vision

Search Result 859, Processing Time 0.029 seconds

Estimation of Traffic Volume Using Deep Learning in Stereo CCTV Image (스테레오 CCTV 영상에서 딥러닝을 이용한 교통량 추정)

  • Seo, Hong Deok;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.269-279
    • /
    • 2020
  • Traffic estimation mainly involves surveying equipment such as automatic vehicle classification, vehicle detection system, toll collection system, and personnel surveys through CCTV (Closed Circuit TeleVision), but this requires a lot of manpower and cost. In this study, we proposed a method of estimating traffic volume using deep learning and stereo CCTV to overcome the limitation of not detecting the entire vehicle in case of single CCTV. COCO (Common Objects in Context) dataset was used to train deep learning models to detect vehicles, and each vehicle was detected in left and right CCTV images in real time. Then, the vehicle that could not be detected from each image was additionally detected by using affine transformation to improve the accuracy of traffic volume. Experiments were conducted separately for the normal road environment and the case of weather conditions with fog. In the normal road environment, vehicle detection improved by 6.75% and 5.92% in left and right images, respectively, than in a single CCTV image. In addition, in the foggy road environment, vehicle detection was improved by 10.79% and 12.88% in the left and right images, respectively.

Research Trends and Case Study on Keypoint Recognition and Tracking for Augmented Reality in Mobile Devices (모바일 증강현실을 위한 특징점 인식, 추적 기술 및 사례 연구)

  • Choi, Heeseung;Ahn, Sang Chul;Kim, Ig-Jae
    • Journal of the HCI Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.45-55
    • /
    • 2015
  • In recent years, keypoint recognition and tracking technologies are considered as crucial task in many practical systems for markerless augmented reality. The keypoint recognition and technologies are widely studied in many research areas, including computer vision, robot navigation, human computer interaction, and etc. Moreover, due to the rapid growth of mobile market related to augmented reality applications, several effective keypoint-based matching and tracking methods have been introduced by considering mobile embedded systems. Therefore, in this paper, we extensively analyze the recent research trends on keypoint-based recognition and tracking with several core components: keypoint detection, description, matching, and tracking. Then, we also present one of our research related to mobile augmented reality, named mobile tour guide system, by real-time recognition and tracking of tour maps on mobile devices.

A Study on Development of a Smart Wellness Robot Platform (스마트 웰니스 로봇 플랫폼 개발에 관한 연구)

  • Lee, Byoungsu;Kim, Seungwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.331-339
    • /
    • 2016
  • This paper developed a home wellness robot platform to perform the roles in basic health care and life care in an aging society. A robotic platform and a sensory platform were implemented for an indoor wellness service. In the robotic platform, the precise mobility and the dexterous manipulation are not only developed in a symbiotic service-robot, but they also ensure the robot architecture of human friendliness. The mobile robot was made in the agile system, which consists of Omni-wheels. The manipulator was made in the anthropomorphic system to carry out dexterous handwork. In the sensing platform, RF tags and stereo camera were used for self and target localization. They were processed independently and cooperatively for accurate position and posture. The wellness robot platform was integrated in a real-time system. Finally, its good performance was confirmed through live indoor tests for health and life care.

A Fast SAD Algorithm for Area-based Stereo Matching Methods (영역기반 스테레오 영상 정합을 위한 고속 SAD 알고리즘)

  • Lee, Woo-Young;Kim, Cheong Ghil
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.8-12
    • /
    • 2012
  • Area-based stereo matchng algorithms are widely used for image analysis for stereo vision. SAD (Sum of Absolute Difference) algorithm is one of well known area-based stereo matchng algorithms with the characteristics of data intensive computing application. Therefore, it requires very high computation capabilities and its processing speed becomes very slow with software realization. This paper proposes a fast SAD algorithm utilizing SSE (Streaming SIMD Extensions) instructions based on SIMD (Single Instruction Multiple Data) parallism. CPU supporing SSE instructions has 16 XMM registers with 128 bits. For the performance evaluation of the proposed scheme, we compare the processing speed between SAD with/without SSE instructions. The proposed scheme achieves four times performance improvement over the general SAD, which shows the possibility of the software realization of real time SAD algorithm.

Crowd Behavior Detection using Convolutional Neural Network (컨볼루션 뉴럴 네트워크를 이용한 군중 행동 감지)

  • Ullah, Waseem;Ullah, Fath U Min;Baik, Sung Wook;Lee, Mi Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.6
    • /
    • pp.7-14
    • /
    • 2019
  • The automatic monitoring and detection of crowd behavior in the surveillance videos has obtained significant attention in the field of computer vision due to its vast applications such as security, safety and protection of assets etc. Also, the field of crowd analysis is growing upwards in the research community. For this purpose, it is very necessary to detect and analyze the crowd behavior. In this paper, we proposed a deep learning-based method which detects abnormal activities in surveillance cameras installed in a smart city. A fine-tuned VGG-16 model is trained on publicly available benchmark crowd dataset and is tested on real-time streaming. The CCTV camera captures the video stream, when abnormal activity is detected, an alert is generated and is sent to the nearest police station to take immediate action before further loss. We experimentally have proven that the proposed method outperforms over the existing state-of-the-art techniques.

On a Way in which Biographical Film Summons Character and History - Focusing on the Film, The Golden Era - (전기 영화가 인물과 역사를 소환하는 한 방식에 대해 - 영화 <황금시대>를 중심으로)

  • Jin, Sung-Hee
    • Cross-Cultural Studies
    • /
    • v.39
    • /
    • pp.287-308
    • /
    • 2015
  • Biographical film is a genre narrativizing the actual person and history, and reproducing the character and history in a biographical film is in a dimension different from a film focused on a fiction. Discussion between these methods of narrative composition and image reproduction in a biographical film is also, in line with artistic/aesthetic problems and ethical/philosophical theses of the film text. This study discusses the phase of the way of reproduction of the actual person, $Xi{\bar{a}}o$ $H{\acute{o}}ng$ in the biographical film, The Golden Era and the time she lived in a biographical film and how the audience's discussion of the film and socio-cultural discourse differ depending on their attitude towards the cinematic introspection of the text. The narrative structure, the method of image reproduction and cinematic devices of the film, The Golden Era are completely off the point of the general format of the traditional biographical film. In The Golden Era, $Xi{\bar{a}}o$ $H{\acute{o}}ng$ and the history which she lived in did not revive depending on an omniscient subject's selective statement and meta-film structure. Ann Hui removed general, mythic images of $Xi{\bar{a}}o$ $H{\acute{o}}ng$ formed in the field of traditional Chinese culture and reproduced her through multilateral visions of a real, fictional narrator. Each spectator's judgment and interpretation of the film intervene in the multi-layered and sparse descriptions of the actual person's images and the era of the characters. Through this, it is possible to approach the uniqueness and authenticity a historical character, $Xi{\bar{a}}o$ $H{\acute{o}}ng$ and to have an opportunity of multi-layered reflection on how to secure a critical distance and make a perception in historical judgment.

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.

The Present and Future of Medical Robots: Focused on Surgical Robots (의료로봇의 현재와 미래: 수술로봇을 중심으로)

  • Song, Mi Ok;Cho, Yong Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.4
    • /
    • pp.349-353
    • /
    • 2021
  • This study is a review study attempted to analyze the current situation of surgical robots based on previous research on surgical robots in the era of the 4th revolution, and to forecast the future direction of surgical robots. Surgical robots have made full progress since the launch of the da Vinci and the surgical robot is playing a role of supporting the surgeries of the surgeons or the master-slave method reflecting the intention of the surgeons. Recently, technologies are being developed to combine artificial intelligence and big data with surgical robots, and to commercialize a universal platform rather than a platform dedicated to surgery. Moreover, technologies for automating surgical robots are being developed by generating 3D image data based on diagnostic image data, providing real-time images, and integrating image data into one system. For the development of surgical robots, cooperation with clinicians and engineers, safety management of surgical robot, and institutional support for the use of surgical robots will be required.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

A method of improving the quality of 3D images acquired from RGB-depth camera (깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.637-644
    • /
    • 2021
  • In general, in the fields of computer vision, robotics, and augmented reality, the importance of 3D space and 3D object detection and recognition technology has emerged. In particular, since it is possible to acquire RGB images and depth images in real time through an image sensor using Microsoft Kinect method, many changes have been made to object detection, tracking and recognition studies. In this paper, we propose a method to improve the quality of 3D reconstructed images by processing images acquired through a depth-based (RGB-Depth) camera on a multi-view camera system. In this paper, a method of removing noise outside an object by applying a mask acquired from a color image and a method of applying a combined filtering operation to obtain the difference in depth information between pixels inside the object is proposed. Through each experiment result, it was confirmed that the proposed method can effectively remove noise and improve the quality of 3D reconstructed image.