• Title/Summary/Keyword: real-time vehicle data

Search Result 582, Processing Time 0.028 seconds

A Simulation Model for Evaluating Demand Responsive Transit: Real-Time Shared-Taxi Application (수요대응형 교통수단 시뮬레이션 방안: Real-Time Shared-Taxi 적용예시)

  • Jung, Jae-Young
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.163-171
    • /
    • 2012
  • Demand Responsive Transit (DRT) services are becoming necessary as part of not only alternative transportation means for elderly and mobility impaired passengers, but also sustainable and flexible transportation options in urban area due to the development of communication technologies and Location Based Services (LBS). It is difficult to investigate the system performance regarding vehicle operational schemes and vehicle routing algorithms due to the lack of commercial software to support door-to-door vehicle simulation for larger area. This study proposes a simulation framework to evaluate innovative and flexible transit systems focusing on various vehicle routing algorithms, which describes data-type requirements for simulating door-to-door service on demand. A simulation framework is applied to compare two vehicle dispatch algorithms, Nearest Vehicle Dispatch (NVD) and Insertion Heuristic (IH) for real-time shared-taxi service in Seoul. System productivity and efficiency of the shared-taxi service are investigated, comparing to the conventional taxi system.

Methodology for Evaluating Real-time Rear-end Collision Risks based on Vehicle Trajectory Data Extracted from Video Image Tracking (영상기반 실시간 후미추돌 위험도 분석기법 개발)

  • O, Cheol;Jo, Jeong-Il;Kim, Jun-Hyeong;O, Ju-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.5
    • /
    • pp.173-182
    • /
    • 2007
  • An innovative feature of this study is to propose a methodology for evaluating safety performance in real time based on vehicle trajectory data extracted from video images. The essence of evaluating safety performance is to capture unsafe car-following events between individual vehicles traveling surveillance area. The proposed methodology applied two indices including real-time safety index (RSI) based on the concept of safe stopping distance and time-to-collision (TTC) to the evaluation of safety performance. It is believed that outcomes would be greatly utilized in developing a new generation of video images processing (VIP) based traffic detection systems capable of producing safety performance measurements. Relevant technical challenges for such detection systems are also discussed.

Real-Time Dynamic Simulation of Vehicle and Occupant Using a Neural Network (시뮬레이터에서 동역학 실시간 처리를 위한 신경망 적용)

  • Son, Kwon;Choi, Kyung-Hyun;Song, Nam-Yong;Lee, Dong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.132-140
    • /
    • 2002
  • A momentum backpropagation neural network is prepared to carry out real-time dynamics simulations of a passenger car. A full-car model of fifteen degrees of freedom was constructed for vehicle dynamics analysis. Human body dynamics analysis was performed for a male driver(50 percentile Korean adult) restrained by a three point seatbelt system. The trained data using the neural network were obtained using a dynamic solver, ADAMS . The neural network were formed based on the dynamics of the simulator. The optimized hidden layer was obtained by selecting the optimal number of hidden layers. The driving scenario including bump passing and lane changing has been used for the estimation of the proposed neural network. A comparison between the trained data and neural network outputs is found to be satisfactory to show the applicability of the suggested approach.

A Vehicle Stop-and-Go Control Strategy based on Human Drivers Driving Characteristics

  • Yi Kyongsu;Han Donghoon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.993-1000
    • /
    • 2005
  • A vehicle cruise control strategy designed based on human drivers driving characteristics has been investigated. Human drivers driving patterns have been investigated using vehicle driving test data obtained from 125 participants. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would feel comfortable to the human driver. Vehicle following charac­teristics of the cruise controlled vehicle have been investigated using real-world vehicle driving test data and a validated simulation package.

Implementation of integrability hardware for knowing driving status data with OBD-2 network (OBD-2 네트워크를 위한 통합 OBD-2 커넥터 설계)

  • Baek, Sung-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.511-514
    • /
    • 2011
  • Recently, devices such as smartphone and vehicle blackbox and EDR(Evern Data Recorder knowed automotive real-time control and driving data to use OBD-2(in-vehicle network). when devices receive vehicle driving data, communication way use each Wifi, Bluetooth. but if user and driver change device to use OBD-2 connect, the device differ communication network way. and driver buy and change OBD-2 connect. In this paper, to remedy one's shortcomings, there integrate Bluetooth and Wifi network module and design integrability hardware as any another device know vehicle real-time control and driving data with one integrability connect.

  • PDF

Modeling and Analysis of the Speed Profiles for the Gasoline Hybrid Vehicle in the Real Driving Emission Test (가솔린 하이브리드 차량의 실도로 배기규제 평가를 위한 구간 주행 속도 특성 분석 및 해석 모델 개발 연구)

  • Seongsu Kim;Minho Lee;Kyoungha Noh;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.184-190
    • /
    • 2023
  • The European Union has instituted a new emission standard protocol that necessitates real-time measurements from vehicles on actual roads. The adequate development of routes for real driving emissions (RDE) mandates substantial resources, encompassing both vehicles and a portable emission measurement system (PEMS). In this study, a simulation tool was utilized to predict the vehicle speed traversing the routes developed for the RDE measurements. Initially, the vehicle powertrain system was modeled for both a gasoline hybrid vehicle and a gasoline engine-only vehicle. Subsequently, the speed profile for the specified vehicle was constructed based on the RDE route developed for the EURO-6 standard. Finally, the predicted vehicle speed profiles for highway and urban routes were assessed utilizing the actual driving data. The driving model predicted more consistency in the vehicle speed at each driving section. Meanwhile, the human driver tended to accelerate further, and then decelerate in each section, instead of cruising at a predicted section speed.

A study on Development of Remote Vehicle Fault Diagnostic System (원격 자동차 고장 진단 시스템 개발에 대한 연구)

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.224-227
    • /
    • 2015
  • Data transmission via the car driver's tethered smart phone may have a volume-dependent billing in case car driver' phone transmits data in real-time to the remote data center. The on-board diagnosis data generated are temporary stored locally to mobile remote diagnosis application on the car driver's phone, and then transmit to the data center later when car driver connects to the Internet. To increase the easiest of using the remote vehicle application without blocking other tasks to be executing on the cloud, node.js stands as a suitable candidate for handling tasks of data storage on the cloud via mobile network. We demonstrate the effectiveness of the proposed architecture by simulating a preliminary case study of an android application responsible of real time analysis by using a vehicle-to- smart phones applications interface approach that considers the smart phones to act as a remote user which passes driver inputs and delivers output from external applications. In this paper, we propose a study on development of Remote Vehicle fault diagnostic system features web server architecture based event loop approach using node.js platform, and wireless communication to handle vehicle diagnostics data to a data center.

  • PDF

A Real Time Traffic Flow Model Based on Deep Learning

  • Zhang, Shuai;Pei, Cai Y.;Liu, Wen Y.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2473-2489
    • /
    • 2022
  • Urban development has brought about the increasing saturation of urban traffic demand, and traffic congestion has become the primary problem in transportation. Roads are in a state of waiting in line or even congestion, which seriously affects people's enthusiasm and efficiency of travel. This paper mainly studies the discrete domain path planning method based on the flow data. Taking the traffic flow data based on the highway network structure as the research object, this paper uses the deep learning theory technology to complete the path weight determination process, optimizes the path planning algorithm, realizes the vehicle path planning application for the expressway, and carries on the deployment operation in the highway company. The path topology is constructed to transform the actual road information into abstract space that the machine can understand. An appropriate data structure is used for storage, and a path topology based on the modeling background of expressway is constructed to realize the mutual mapping between the two. Experiments show that the proposed method can further reduce the interpolation error, and the interpolation error in the case of random missing is smaller than that in the other two missing modes. In order to improve the real-time performance of vehicle path planning, the association features are selected, the path weights are calculated comprehensively, and the traditional path planning algorithm structure is optimized. It is of great significance for the sustainable development of cities.

Real-time Integrity for Vehicle Black Box System (차량용 블랙박스 시스템을 위한 실시간 무결성 보장기법)

  • Kim, Yun-Gyu;Kim, Bum-Han;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.19 no.6
    • /
    • pp.49-61
    • /
    • 2009
  • Recently, a great attention has been paid to a vehicle black box device in the auto markets since it provides an accident re-construction based on the data which contains audio, video, and some meaningful driving informations. It is expected that the device will get to promote around commercial vehicles and the market will greatly grow within a few years. Drivers who equips the device in their car believes that it can find the origin of an accident and help an objective judge. Unfortunately, the current one does not provide the integrity of the data stored in the device. That is the data can be forged or modified by outsider or insider adversary because it is just designed to keep the latest data produced by itself. This fact cause a great concern in car insurance and law enforcement, since the unprotected data cannot be trusted. To resolve the problem, in this paper, we propose a novel real-time integrity protection scheme for vehicle black box device. We also present the evaluation results by simulation using our software implementation.

Design and Implementation of a Real-Time Vehicle's Model Recognition System (실시간 차종인식 시스템의 설계 및 구현)

  • Choi Tae-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.877-889
    • /
    • 2006
  • This paper introduces a simple but effective method for recognizing vehicle models corresponding to each maker by information and images for moving vehicles. The proposed approach is implemented by combination of the breadth detection mechanism using the vehicle's pressure, exact height detection by a laser scanning, and license plate recognition for classifying specific vehicles. The implemented system is therefore capable of robust classification with real-time vehicle's moving images and established sensors. Simulation results using the proposed method on synthetic data as well as real world images demonstrate that proposed method can maintain an excellent recognition rate for moving vehicle models because of image acquisition by 2-D CCD and various image processing algorithms.