• Title/Summary/Keyword: real-time task

Search Result 758, Processing Time 0.025 seconds

Performance Reengineering of Embedded Real-Time Systems (내장형 실시간 시스템의 성능 개선을 위한 리엔지니어링 기법)

  • 홍성수
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.299-306
    • /
    • 2003
  • This paper formulates a problem of embedded real-time system re-engineering, and presents its solution approach. Embedded system re-engineering is defined as a development task of meeting performance requirements newly imposed on a system after its hardware and software have been fully implemented. The performance requirements nay include a real-time throughput and an input-to-output latency. The proposed solution approach is based on a bottleneck analysis and nonlinear optimization. The inputs to the approach include a system design specified with a process network and a set of task graphs, task allocation and scheduling, and a new real-time throughput requirement specified as a system's period constraint. The solution approach works in two steps. In the first step, it determines bottleneck precesses in the process network via estimation of process latencies. In the second step, it derives a system of constraints with performance scaling factors of processing elements being variables. It then solves the constraints for the performance staling factors with an objective of minimizing the total hardware cost of the resultant system. These scaling factors suggest the minimal cost hardware upgrade to meet the new performance requirement. Since this approach does not modify carefully designed software structures, it helps reduce the re-engineering cycle.

Architectural Refactoring of Real-Time Software Design for Predictable Controls of Artificial Heart (인공심장의 예측 가능한 제어를 위한 실시간 소프트웨어 설계 구조의 개선)

  • Jeong, Se-Hun;Kim, Hee-Jin;Park, Sang-Soo;Cha, Sung-Deok
    • The KIPS Transactions:PartA
    • /
    • v.18A no.6
    • /
    • pp.271-280
    • /
    • 2011
  • Time-Triggered Architecture (TTA), one of real-time software design paradigms which executes tasks in timely manner, has long been advocated as being better suited in fore-sighting system behavior than event-triggered architecture (ETA). To gain this valuable feature of TTA, however, precise task designing process is mandatory. Alternatively, ETA tries to execute tasks whenever paired events are occurred. It provides intuitive and flexible basement to add/remove tasks and, moreover, better response time performance. However ETA is difficult to analyze because system behavior might be different depending on the order of interrupts detected by the system. Many previous researches recommended TTA when developing safety-critical real-time systems, but cost problem of task designing process and insufficient consensus for applying rigorous software engineering practice are still challenging in practice. This paper describes software refactoring process which applying TTA approach into ETA based embedded software in artificial heart system. We implemented dedicated interrupt monitoring program to capture existing tasks' real-time characteristics. Based on the captured information, proper task designing process is done. Real-time analysis using RMA (Rate-Monotonic Analysis) verified that new design guarantees timeliness of the system. Empirical experiments revealed that revised design is as efficient, when measured in terms of system's external output, as the old design and enhances predictability of the system behavior as well.

Efficient task allocation algorithms for reducing processors on real-time multiprocessor system (실시간 다중프로세서 환경에서 프로세서 수의 감소를 위한 효율적인 타스크 배치방식)

  • 신명호;이정태;박승규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.11
    • /
    • pp.2801-2809
    • /
    • 1996
  • Scheduling problems in real-time systems are known to be NP-hard. the heuristic approaches aregenerally aplied to solve a certain class of systems. One of such cases is to allocate periodic tasks to multiprocessors while the moethod assures the requirement of the deadine constraints of real-time systems. The study on the allocation of periodic taks includes RMNF, RMFF, FFDUF and Next-Fit-M algorithms, which make a set of task grups first and then allocate to processors. This papre proposes the various algorithms which are based on the Next-Fit-M. To analyze the four proposed methods, simulation was carried on, in which the sample tasks are randomly generated with the various time intervals. The proposed algorithms reduce the number of processors compared with the conventional methods.

  • PDF

Visual Telephone System of Differential Task Interrupt Method (차등 태스크 인터럽트 방식의 영상단말 시스템)

  • 박배욱;정하재;오창석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.739-746
    • /
    • 2002
  • In this paper, a new visual telephone system which has a differential task interrupt transfer feature for real time video phone service is presented. Owing to the result of Interrupt transfer of different speed according to the time critical degree of tasks, the flow of audio and video data stream can be kept as constant speed in other word that means video phone services are carried out in real time. The ITU-T H.32x visual telephone recommendations are first analyzed, and the unsatisfactory items of existing systems are second inquired the cause, such as performance, quality. And then the design concept and ideas which enable it to solve them are third devised, the next, the new architecture of visual telephone system for real time video phone source are designed, which make it possible to solve the existing problems by means of different tasks interrupt transfer method.

A Study on Probabilistic Response-time Analysis for Real-time Control Systems (실시간 제어시스템의 확률적 응답시간 해석에 관한 연구)

  • Han, Jae-Hyun;Shin, Min-Suk;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.186-195
    • /
    • 2006
  • In real-time control systems, the traditional timing analysis based on worst-case response-time(WCRT) is too conservative for the firm and soft real-time control systems, which permit the maximum utilization factor greater than one. We suggested a probabilistic analysis method possible to apply the firm and soft real-time control systems under considering dependency relationship between tasks. The proposed technique determines the deadline miss probability(DMP) of each task from computing the average response-time distribution under a fixed-priority scheduling policy. The method improves the predictable ability forthe average performance and the temporal behavior of real-time control systems.

An open Scheduling Framework for QoS resource management in the Internet of Things

  • Jing, Weipeng;Miao, Qiucheng;Chen, Guangsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4103-4121
    • /
    • 2018
  • Quality of Service (QoS) awareness is recognized as a key point for the success of Internet of Things (IOT).Realizing the full potential of the Internet of Things requires, a real-time task scheduling algorithm must be designed to meet the QoS need. In order to schedule tasks with diverse QoS requirements in cloud environment efficiently, we propose a task scheduling strategy based on dynamic priority and load balancing (DPLB) in this paper. The dynamic priority consisted of task value density and the urgency of the task execution, the priority is increased over time to insure that each task can be implemented in time. The scheduling decision variable is composed of time attractiveness considered earliest completion time (ECT) and load brightness considered load status information which by obtain from each virtual machine by topic-based publish/subscribe mechanism. Then sorting tasks by priority and first schedule the task with highest priority to the virtual machine in feasible VMs group which satisfy the QoS requirements of task with maximal. Finally, after this patch tasks are scheduled over, the task migration manager will start work to reduce the load balancing degree.The experimental results show that, compared with the Min-Min, Max-Min, WRR, GAs, and HBB-LB algorithm, the DPLB is more effective, it reduces the Makespan, balances the load of VMs, augments the success completed ratio of tasks before deadline and raises the profit of cloud service per second.

Design and Implementation of Multi-Level scheduling on MicroC/OS-II (MicroC/OS - II 기반에서 Multi-Level 스케줄링의 설계 및 구현)

  • Lim Bosub;Lee Jaeyoon;Kim Kwang;Heu Sin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.832-834
    • /
    • 2005
  • 임베디드 시스템은 범용 컴퓨팅 시스템과 달리 자신을 포함하고 있는 기기에 부과된 특정 목적의 컴퓨팅 작업만을 수행한다. 이 시스템을 제어하기 위해서 운영체제가 필요로 하며, 임베디드 환경에서는 신뢰성과 정확성을 요하는 부분이 많기 때문에 실시간 운영체제를 필요로 한다. Real-Time kernel을 기반으로 하는 MicroC/OS-II는 수많은 용도로 사용되고 있지만 task 사용에 한계가 있다. 이 논문에서 제안하는 스케줄링은 task의 생성 수를 늘려주지만, 이 경우 task간의 우선순위 설정이 어려워진다. 이 문제 해결을 위해서 task들의 우선순위 결정은 deadline을 이용하여 3레벨로 나눈다. 3레벨로 나누어지면 task의 수가 증가해도 개발자는 task들을 레벨에 맞게 설정하면 task 관리로 인하여 생기는 문제를 줄일 수 있으며, 효율적인 스케줄링을 가능하게 한다.

  • PDF

Priority-based Group Task Scheduling Policy for a Multiplayer Real-time Game Server (다중사용자용 실시간 게임 서버를 위한 우선순위 기반 그룹 태스크 스케쥴링 정책)

  • Kim, Jin-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.57-64
    • /
    • 2012
  • Multiplayer, real-time games are a kind of soft real-time systems because a game server has to respond to requests from many clients within specified time constraints. Client events have different timeliness and consistency requirements according to their nature in the game world. These requirements lead to different priorities on CPU processing. Events can be divided into different groups, depending on their consistency degree and priority. To handle these events with different priority and meet their timing constraints, we propose a priority-based group task scheduling policy in this paper. The number of clients or events requested by each client may be increased temporarily. In the presence of transient overloading, the game server needs to allocate more CPU bandwidth to serve an event with the higher priority level preferentially. The proposed scheduling policy is capable of enhancing real-time performance of the entire system by maximizing the number of events with higher priority completed successfully within their deadlines. The performance of this policy is evaluated through extensive simulation experiments.

Duplication Scheduling of Periodic Tasks Based on Precedence Constraints and Communication Costs in Distributed Real-Time Systems (분산 실시간 시스템에서 우선순위와 통신비용을 고려한 주기적 타스크들의 중복 스케줄링)

  • Park, Mi-Kyoung;Kim, Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.2 no.4
    • /
    • pp.378-389
    • /
    • 1999
  • Parallel tasks in distributed real-time systems can be divided into several subtasks and be executed in parallel according to their real-time attributes. But, it is difficult to gain the optimal solution which is to allocate a tasks deadline into the subtasks deadline while minimizing the subtasks deadline miss. Tn this Paper, we propose the algorithm that allocates deadlines into each subtask, according to the attributes of each subtask(i.e. using communication time and execution time to periodic tasks). Also, we suggest a processor mapping algorithm that considers the communication time among the processors and the effective duplication algorithm which is allocated to the identical processor for the purpose of improving the communication time between the subtasks. We can obtain a result that reduces IPC(Inter-Processor Communication) time and uses the idle processor through applying effective real-time attributes to FUTD(Fully connected, Unbounded Task Duplication) algorithms. As a result, we can improve the average processor utilization.

  • PDF

A Soft Aperiodic Real-Time Task Scheduling Algorithm Supporting Maximum Slack Time (최대여유시간 제공 연성 비주기 실시간 태스크 스케줄링 알고리즘)

  • Im, Deok-Ju;Park, Seong-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.4
    • /
    • pp.9-15
    • /
    • 2000
  • The purpose of this paper is to minimize the a slack computation time of the scheduling of a soft aperiodic real-time tasks in a fixed priority real-time system. The proposed algorithm reduces the computation overhead at on-line time and supports the maximum slack time assigned for aperiodic real-time tasks. The proposed algorithm has 10~20% more response time for aperiodic real-time tasks than that of Slack Stealing Algorithm that offers optimal response time in fixed priority real-time system. However, the performance of the proposed algorithm is seven times better in a scheduling overhead.

  • PDF