• Title/Summary/Keyword: real-time route guidance information

Search Result 35, Processing Time 0.028 seconds

A Proposal of the Real time Optimal Route Algorithm With Window mechanism (윈도우 매커니즘을 이용한 실시간 최적경로 추출 알고리즘 제안)

  • 이우용;하동문;신준호;김용득
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.737-740
    • /
    • 1999
  • This paper deals with a real time optimization algorithm within real time for DRGS(Dynamic Route Guidance System) and evaluate the algorithm. A pre-developed system offers the optimal route in using only static traffic information. In using real-time traffic information, Dynamic route guidance algorithm is needed. The serious problem in implementing it is processing time increase as nodes increase and then the real time processing is impossible. Thus, in this paper we propose the optimal route algorithm with window mechanism for the real-time processing and then evaluate the algorithms.

  • PDF

Design and Implementation of an Intelligent System for Real-Time Route Guidance (실시간 경로 조언을 위한 지능형 시스템의 설계 및 구축)

  • Kim, Seong-In;Kim, Hyun-Kee
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.374-381
    • /
    • 2002
  • In this paper, we design and implement a real-time route guidance system(RGS) in large-scale networks. Coupled with the well-known mathematical routing algorithms, we devise an RGS for knowledge aquisition and self-learning ability within the framework of the expert system. Through off-line construction of database, on-line treatment of unexpected traffic accidents, etc., the developed RGS can provide drivers with good quality real-time routing information. The practical effectiveness of the proposed system is demonstrated in terms of response time and route appropriateness.

Representing Navigation Information on Real-time Video in Visual Car Navigation System

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.365-373
    • /
    • 2007
  • Car navigation system is a key application in geographic information system and telematics. A recent trend of car navigation system is using real video captured by camera equipped on the vehicle, because video has more representation power about real world than conventional map. In this paper, we suggest a visual car navigation system that visually represents route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid directly on the video. The system integrates real-time data acquisition, conventional route finding and guidance, computer vision, and augmented reality display. We also designed visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to current location and driving circumstances. We briefly show implementation of the system.

REPRESENTATION OF NAVIGATION INFORMATION FOR VISUAL CAR NAVIGATION SYSTEM

  • Joo, In-Hak;Lee, Seung-Yong;Cho, Seong-Ik
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.508-511
    • /
    • 2007
  • Car navigation system is one of the most important applications in telematics. A newest trend of car navigation system is using real video captured by camera equipped on the vehicle, because video can overcome the semantic gap between map and real world. In this paper, we suggest a visual car navigation system that visually represents navigation information or route guidance. It can improve drivers' understanding about real world by capturing real-time video and displaying navigation information overlaid on it. Main services of the visual car navigation system are graphical turn guidance and lane change guidance. We suggest the system architecture that implements the services by integrating conventional route finding and guidance, computer vision functions, and augmented reality display functions. What we designed as a core part of the system is visual navigation controller, which controls other modules and dynamically determines visual representation methods of navigation information according to a determination rule based on current location and driving circumstances. We briefly show the implementation of system.

  • PDF

A Study on Development of Video Navigation System with real-time GPS Information

  • Jang, Jin-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.8
    • /
    • pp.95-99
    • /
    • 2018
  • This research is related to GPS(global positioning system) enabled device navigation service and consists of two parts. The first is the logic that records the route guidance video and records GPS information in time, and the second is the logic that outputs the created video data based on real time GPS. The recording logic first determines the origin and destination, records the video from the origin to the destination and it adjusts the speed of the image in a specific area so that the user can see it easily. And insert ancillary information and advertisements that can help guide the route. In the output logic, we provide navigation services using the video and GPS data tables we created, and it receives user's GPS information in real time and corrects it based on the recent user location to reduce errors. This provides local guidance services to people who lack language skills like foreigners.

Estimation of Willingness to pay for Realtime Route Guidance Information by Contingent Valuation Method (조건부가치측정법(CVM)을 이용한 실시간 경로안내시스템의 지불의사액 산정)

  • Do, Myung-Sik;Kim, Yoon-Sik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.5
    • /
    • pp.46-55
    • /
    • 2012
  • This study proposes an estimate method of willingness to pay(WTP) for real-time route guidance systems using contingent valuation method(CVM) under double bounded dichotomous choice question(DBDCQ) and analysis for impact factors of WTP estimation. This study assumed that provided real-time traffic information service is optimal route concepts dealing with traffic conditions on origin-destination. Analysis targets were classified into two groups as short distance path and middle distance path for estimating WTP for realtime route guidance system in a year using the survival analysis method and the regression model with personal information, actual condition and satisfaction of information usage and users' awareness and usage of facilities. As a result, mean WTP of realtime route guidance system is 4,034won/year in short distance path, and 4,884won/year in middle distance path. Therefore real-time route guidance system for longer distance path is recognized as more valuable than shorter distance path. Moreover, the necessity of information was required on a higher income group and higher WTP was estimated on owners of vehicle group and lower awareness of a route group.

Dynamic Route Guidance via Road Network Matching and Public Transportation Data

  • Nguyen, Hoa-Hung;Jeong, Han-You
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.756-761
    • /
    • 2021
  • Dynamic route guidance (DRG) finds the fastest path from a source to a destination location considering the real-time congestion information. In Korea, the traffic state information is available by the public transportation data (PTD) which is indexed on top of the node-link map (NLM). While the NLM is the authoritative low-detailed road network for major roads only, the OpenStreetMap road network (ORN) supports not only a high-detailed road network but also a few open-source routing engines, such as OSRM and Valhalla. In this paper, we propose a DRG framework based on road network matching between the NLM and ORN. This framework regularly retrieves the NLM-indexed PTD to construct a historical speed profile which is then mapped to ORN. Next, we extend the Valhalla routing engine to support dynamic routing based on the historical speed profile. The numerical results at the Yeoui-do island with collected 11-month PTD show that our DRG framework reduces the travel time up to 15.24 % and improves the estimation accuracy of travel time more than 5 times.

A Study on Providing Real-Time Route Guidance Information by Variable Massage Signs with Driver Behavior (운전자 행태를 고려한 VMS의 실시간 경로안내 정보제공에 관한 연구)

  • Lee, Chang-U;Jeong, Jin-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.65-79
    • /
    • 2006
  • The ATIS(Advance Traveler Information System), as one part of ITS, is a system aiming to disperse traffic volume on transportation networks by providing traffic information to transportation users on pre-trip and en-route trips. One of tools in ATIS is usage of VMS(Variable Message Signs). It provides to the drivers with direct information about state of processing direction. which is considered as the most effective method in ATIS. The purposes of providing VMS information are classified two categories. One is to provide simple information to drivers for their convenience. The other is to manage traffic demand to improve transportation network performance. However, for more effective and reliable VMS information, several strategies should be taken into account. The main VMS management strategy is "Traffic Diversion Strategy for minimum delay" when traffic congestion or incident are occurred. For effective operation. firstly. reasonable diversion traffic volume is determined by network traffic condition Secondly, it is necessary to make providing information strategy which reflects driver response behavior for controling diversion traffic volume. This paper focuses on the providing real-time route guidance information by VMS when congestion is occurred by the incidents. This sturdy estimates time-dependent system optimal diversion rate that inflects travel time and queue lengths using traffic flow simulation model on base Cellular Automata. In addition, route choice behavior models are developed using binary logit model for traffic information variable by traffic system controller. Finally, this study provides time-dependent VMS massage contents and degree of providing information in order to optimize the traffic flow.

The Design and Implementation of Mobile Application Solution for Forest Fire based on Drone Photography and Amazon Web Service (AWS)

  • Choi, Si-eun;Bang, Jong-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2020
  • Last year's Goseong-Sokcho forest fires have highlighted the limitations of extinguishing work for night-time forest fire and the importance of quick identification for information on the spread of forest fire. However, it is not easy to find services that take into account the characteristics of forest fires, as most existing disaster-related mobile applications and research assume various disaster situations rather than just forest fire situations. Therefore, a system that can provide information quickly is needed, taking into account the characteristics of forest fires and the limitations of extinguishing work. In this paper, we propose evacuation route guidance services that bypass areas where fire has already spread, supplement existing methods of extinguishing work, and provide general information on forest fire situations in real time, by putting drones into forest fire situations. It has been implemented to automate image analysis using the Rekognition service of Amazon Web Service (AWS), and the results of fire detection and the T Map API guide the evacuation path. It is expected that the results of this paper will allow efficient and rapid rescue and extinguishing work to be carried out, and further reduce the damage of human life caused by forest fires.

Development of Real-time Subway Information Service for the Visually Impaired (시각 장애인을 위한 실시간 지하철 이용 정보 제공 서비스 개발)

  • Kim, Hyo-Rin;Yook, Ju-Hye;Park, Se-Jin;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1099-1107
    • /
    • 2020
  • The need for customized services providing real-time subway information through mobile devices for the blind using subway as their primary transportation method is becoming more essential. Therefore, this study is aimed at developing a mobile service to provide real-time subway information by displaying with braille and utilizing Dot Watch. The process of real-time subway information guidance mobile service is as follows: the route confirmation stage, the ride waiting & judgment stage, the on-the-go stage, and lastly, the off-road phase & wrong path state. The service provides real-time appropriate information to the visually impaired people for each situation. It receives subway information through API provided by Seoul Metropolitan Government and ODSay API. The service is developed and coded with in Java using Android Studio, and the communicating method with Dot Watch was done using Bluetooth. The usability evaluation was conducted in terms of efficiency, effectiveness, and satisfaction. The evaluation methods mentioned above were carried out by testees, and feedback was given. They assessed that the information provided was useful but still unstable to use the system. It is expected that actual usability will increase if our study is supplemented using voice output function.