• Title/Summary/Keyword: real-time process

Search Result 4,120, Processing Time 0.046 seconds

A Real-Time Simulation Framework for Incremental Development of Cyber-Physical Systems (CPS의 점진적인 개발 과정을 지원하는 실시간 시뮬레이션 프레임워크)

  • Han, Jae-Hwa;We, Kyoung-Soo;Lee, Chang-Gun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.6
    • /
    • pp.311-321
    • /
    • 2012
  • When developing a CPS, since it is nature of CPS to interact with a physical system, CPS should be verified during its development process by real-time simulation supporting timely interactions between the simulator and existing implemented hardwares. Furthermore, when a part of a simulated system is implemented to real hardwares, i.e., incremental development, the simulator should aware changes of the simulated system and apply it automatically without manual description of the changes for effective development. For this, we suggest a real-time simulation framework including the concept of 'port' which abstracts communication details between the tasks, and a scheduling algorithm for guaranteeing 'real-time correctness' of the simulator.

Design of Real-Time Autonomic Nervous System Evaluation System Using Heart Instantaneous Frequency

  • Noh, Yeon-Sik;Park, Sung-Jun;Park, Sung-Bin;Yoon, Hyung-Ro
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.576-583
    • /
    • 2008
  • In this study, we attempt to design a real-time autonomic nervous system(ANS) evaluation system usable during exercise using heart instantaneous frequency(HIF). Although heart rate variability(HRV) is considered to be a representative signal widely used ANS evaluation system, the R-peak detection process must be included to obtain an HRV signal, which involves a high sampling frequency and interpolation process. In particular, it cannot accurately evaluate the ANS using HRV signals during exercise because it is difficult to detect the R-peak of electrocardiogram(ECG) signals with exposure to many noises during exercise. Therefore, in this study, we develop the ground for a system that can analyze an ANS in real-time by using the HIF signal circumventing the problem of the HRV signal during exercise. First, we compare the HRV and HIF signals in order to prove that the HIF signal is more efficient for ANS analysis than HRV signals during exercise. Further, we performed real-time ANS analysis using HIF and confirmed that the exerciser's ANS variation experiences massive surges at points of acceleration and deceleration of the treadmill(similar to HRV).

A judgment algorithm of the acoustic signal for the automatic defective manufactures detection in press process (음향방출 신호를 이용한 프레스 불량품 자동 판단 알고리즘)

  • Kim, Dong-Hun;Lee, Won-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2010
  • A laborer always watched a process of production carefully but defective manufactures were inspected after press process. These inspections made a waste of human power and defective manufactures could make a serious damage of press mold. Therefore, AE(Acoustic Emission) system was introduced to prevention of the damage of the press molds, to a real time detection of defective manufactures and to save human power. AE system was introduced to solve this problem which is a detecting defective manufacture on real time and to prevent the damage of the press mold. In this research we get acoustic emission signal in accordance with weight and processing method of press by using AE sensor, Preamplifier, AE board signal board which occurs press processing and it analyzed various signal through using CMD8 software on the time. From the result, we found that the intensity and shape of the signal were changed according to the weight and processing type of the press. By using this special algorithm, it can judge the acoustic signal which occurs from press on real time.

Online Real-Time Monitoring of Moisture in Pharmaceutical Granules During Fluidized Bed Drying Using Near-Infrared Spectroscopy (근적외분광분석법을 이용한 의약품 건조공정 중 실시간 수분함량 모니터링)

  • Kim, Jaejin;Kim, Byung-Suk;Lim, Young-Il;Woo, Young-Ah
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Drying of granules for tablet formulation is one of the important unit operations. The loss on drying method is traditionally used for this purpose. However, it is a time-consuming method, requiring at least 1 h. Moreover, it is ineffective in monitoring the moisture content of granules during the drying process. In this study, online real-time monitoring of moisture content during the drying process was successfully performed using near-infrared (NIR) spectroscopy. NIR spectra were collected during 15 different drying batches for developing a reliable NIR spectroscopic method. Such a large number of batches were used to develop a more robust partial least squares (PLS) model. NIR spectra collected from 12 batches were used for developing the model that was validated by predicting the moisture content of the samples in the remaining 3 batches. The standard errors of predictions (SEPs) in the measurement of batch 1, batch 2, and batch 3 were 0.52%, 0.57%, and 0.56%, respectively. The online NIR spectroscopic method developed in this study was reliable and accurate in monitoring the moisture content during the drying process.

Using real time data with rigorous models to optimize plant performance

  • Clemmons, Josh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.828-834
    • /
    • 1989
  • On-Line optimization of process units has heretofore been restricted to the individual equipment level using linear approximate models. The advent of the low cost, high speed micro-computer coupled with the speed and robustness of an equation based exact simulator is making real-time optimization of entire process units a reality. The resultant implications for a decision system applied to day-to-day operations, point to a significant change in the way process plants will be managed in the future.

  • PDF

An Implementation of Real-Time Image-Surface Mapping System (실시간 영상-표면정합 시스템 구현)

  • Yang, Keuntak;Lee, Bongkyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.9-16
    • /
    • 2018
  • The media facade technique requires the matching process of the content to the projection target. For this reason, each time the projection target is changed, the matching process of the same content must be performed again at each time. This problem can be solved by analyzing the elevation of the object and automatically performing matching process of the content in real time and projecting the matched content. In this paper, we propose and implement a new algorithm that can obtain the optimized matching content in real time by analyzing the elevation of the object to be projected. The proposed method processes the image matching by using the depth information of the elevation obtained by IR cameras.

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh ;Hyunwoo Baek ;Kang-Heon Lee ;Dae-Sic Jang;Jihyun Jun ;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2642-2649
    • /
    • 2023
  • A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.

A Case Study on Manufacturing Processes for Virtual Garment Sample

  • Choi, Young Lim
    • Fashion & Textile Research Journal
    • /
    • v.19 no.5
    • /
    • pp.595-601
    • /
    • 2017
  • Advances in 3D garment simulation technology contribute greatly to consumers becoming more immersed in movies and games by realistically expressing the garments the characters in the movie or game are wearing. The fashion industry has reached a point where it needs to maximize efficiency in production and distribution to go beyond time and space in order to compete on the global market. The processes of design and product development in the fashion industry require countless hours of work and consume vast resources in terms of materials and energy to repeat sample production and assessment. Therefore, the design and product development tools and techniques must aim to reduce the sample making process. Therefore, this study aims to study a case for comparing the real garment sample making process to the virtual garment sample making process. In this study, we have analysed the differences between the real and virtual garment making processes by choosing designated patterns. As we can see from the study results, the real and virtual garments generally are made through similar processes in manufacturing, while the time consumed for each shows great variation. In real garment making, scissoring and sewing require the greatest number of work hours, whereas in virtual garment making, most of the time was spent in the simulation process.

A Real-Time Scheduling System Architecture in Next Generation Wafer Production System (차세대 웨이퍼 생산시스템에서의 실시간 스케줄링 시스템 아키텍처)

  • Lee, Hyun;Hur, Sun;Park, You-Jin;Lee, Gun-Woo;Cho, Yong-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.3
    • /
    • pp.184-191
    • /
    • 2010
  • In the environment of 450mm wafers production known as the next-generation semiconductor production process, one of the most significant features is the full automation over the whole manufacturing processes involved. The full automation system for 450mm wafer production will minimize the human workers' involvement in the manufacturing process as much as possible. In addition, since the importance of an individual wafer processing increases noticeably, it is necessary to develop more robust scheduling systems in the whole manufacturing process than so ever. The scheduling systems for the next-generation semiconductor production processes also should be capable of monitoring individual wafers and collecting useful data on them in real time. Based on the information gathered from these processes, the system should finally have a real-time scheduling functions controlling whole the semiconductor manufacturing processes. In this study, preliminary investigations on the requirements and needed functions for constructing the real time scheduling system and transforming manufacturing environments for 300mm wafers to those of 400mm are conducted and through which the next generation semiconductor processes for efficient scheduling in a clustered production system architecture of the scheduler is proposed. Our scheduling architecture is composed of the modules for real-time scheduling, the clustered production type supporting, the optimal scheduling and so on. The specifications of modules to define the major required functions, capabilities, and the relationship between them are presented.

An Efficient Storing Scheme of Real-time Large Data to improve Semiconductor Process Productivities (반도체 공정의 생산성 향상을 위한 실시간 대용량 데이터의 효율적인 저장 기법)

  • Chung, Weon-Il;Kim, Hwan-Koo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3207-3212
    • /
    • 2009
  • Automatic semiconductor manufacturing systems are demanded to improve the efficiency of the semiconductor production process. These systems include the functionalities such as the analysis and management schemes for very large real-time data in order to enhance the productivities. So, it requires the efficient storage management system to store very large real-time data. Traditional database management systems(e.g. Oracle, MY-SQL, MS-SQL) are based on disk. However, previous DBMS's have the limitation on the low storing performance. In this paper, we propose a compress-merge storing method of very large real-time data using insert transaction of a block unit. The proposed method shows better processing performances compare to conventional DBMS's. Also compress-merge method makes it possible that it can store large real-time data on low storage cost. Therefore, the proposed method can be applied to an efficient storage management system in the semiconductor production process.