• 제목/요약/키워드: real-time image reconstruction

검색결과 110건 처리시간 0.022초

FREE VIEWPOINT IMAGE RECONSTRUCTION FROM 3-D MULTI-FOCUS IMAGING SEQUENCES AND ITS IMPLEMENTATION BY CELL-BASED COMPUTING

  • Yonezawayz, Hiroki;Kodamay, Kazuya;Hamamotoz, Takayuki
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.751-754
    • /
    • 2009
  • This paper deals with the Cell-based distributed processing for generating free viewpoint images by merging multiple differently focused images. We previously proposed the method of generating free viewpoint images without any depth estimation. However, it is not so easy to realize real-time image reconstruction based on our previous method. In this paper, we discuss the method to reduce the processing time by dimension reduction for image filtering and Cell-based distributed processing. Especially, the method of high-speed image reconstruction by the Cell processor on SONY PLAYSTATION3(PS3) is described in detail. We show some experimental results by using real images and we discuss the possibility of real-time free viewpoint image reconstruction.

  • PDF

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권4호
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

LCD를 이용한 복소홀로그램의 실시간적 복원 (Real-time reconstruction of complex holograms using LCDs)

  • 김수길;김규태;이병호;김은수;손중영
    • 전자공학회논문지D
    • /
    • 제34D권4호
    • /
    • pp.54-61
    • /
    • 1997
  • In this paper, a new holographic display system that can in real-time reconstruct the complex hologram without the bias and the conjugate image, which is obtained form the modified triangular interferometer, is presented. The proposed system is made of adding liquid crystal displays(LCDs), a $\lambda$/2 wave plate, and a polarizing beam splitter to the conventional mach-zehnder interferontric configuration. We demonstrate through theoretical analysis and experiment that real-time image reconstruction from the complex hologram is possible using the proposed system.

  • PDF

산업 현장의 안전거리 계측을 위한 동적 계획 신경회로망 (A Dynamic Programming Neural Network to find the Safety Distance of Industrial Field)

  • 김종만;김원섭;김영민;황종선;박현철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 기술교육위원회 창립총회 및 학술대회 의료기기전시회
    • /
    • pp.23-27
    • /
    • 2001
  • Making the safety situation from the various work system is very important in the industrial fields. The proposed neural network technique is the real titre computation method based theory of inter-node diffusion for searching the safety distances from the sudden appearance-objests during the work driving. The main steps of the distance computation using the theory of stereo vision like the eyes of man is following steps. One is the processing for finding the corresponding points of stereo images and the other is the interpolation processing of full image data from nonlinear image data of obejects. All of them request much memory space and titre. Therefore the most reliable neural-network algorithm is drived for real time recognition of obejects, which is composed of a dynamic programming algorithm based on sequence matching techniques. And the real time reconstruction of nonlinear image information is processed through several simulations. I-D LIPN hardware has been composed, and the real time reconstruction is verified through the various experiments.

  • PDF

A Real-time Multiview Video Coding System using Fast Disparity Estimation

  • Bae, Kyung-Hoon;Woo, Byung-Kwang
    • 조명전기설비학회논문지
    • /
    • 제22권7호
    • /
    • pp.37-42
    • /
    • 2008
  • In this paper, a real-time multiview video coding system using fast disparity estimation is proposed. In the multiview encoder, adaptive disparity-motion estimation (DME) for an effective 3-dimensional (3D) processing are proposed. That is, by adaptively predicting the mutual correlation between stereo images in the key-frame using the proposed algorithm, the bandwidth of stereo input images can be compressed to the level of a conventional 2D image and a predicted image also can be effectively reconstructed using a reference image and adaptive disparity vectors. Also, in multiview decoder, intermediate view reconstruction (IVR) using adaptive disparity search algorithm (DSA) for real-time multiview video processing is proposed. The proposed IVR can reduce a processing time of disparity estimation by selecting adaptively disparity search range. Accordingly, the proposed multiview video coding system is able to increase the efficiency of the coding rate and improve the resolution.

Underwater 3D Reconstruction for Underwater Construction Robot Based on 2D Multibeam Imaging Sonar

  • Song, Young-eun;Choi, Seung-Joon
    • 한국해양공학회지
    • /
    • 제30권3호
    • /
    • pp.227-233
    • /
    • 2016
  • This paper presents an underwater structure 3D reconstruction method using a 2D multibeam imaging sonar. Compared with other underwater environmental recognition sensors, the 2D multibeam imaging sonar offers high resolution images in water with a high turbidity level by showing the reflection intensity data in real-time. With such advantages, almost all underwater applications, including ROVs, have applied this 2D multibeam imaging sonar. However, the elevation data are missing in sonar images, which causes difficulties with correctly understanding the underwater topography. To solve this problem, this paper concentrates on the physical relationship between the sonar image and the scene topography to find the elevation information. First, the modeling of the sonar reflection intensity data is studied using the distances and angles of the sonar beams and underwater objects. Second, the elevation data are determined based on parameters like the reflection intensity and shadow length. Then, the elevation information is applied to the 3D underwater reconstruction. This paper evaluates the presented real-time 3D reconstruction method using real underwater environments. Experimental results are shown to appraise the performance of the method. Additionally, with the utilization of ROVs, the contour and texture image mapping results from the obtained 3D reconstruction results are presented as applications.

A NOVEL PARALLEL METHOD FOR SPECKLE MASKING RECONSTRUCTION USING THE OPENMP

  • LI, XUEBAO;ZHENG, YANFANG
    • 천문학회지
    • /
    • 제49권4호
    • /
    • pp.157-162
    • /
    • 2016
  • High resolution reconstruction technology is developed to help enhance the spatial resolution of observational images for ground-based solar telescopes, such as speckle masking. Near real-time reconstruction performance is achieved on a high performance cluster using the Message Passing Interface (MPI). However, much time is spent in reconstructing solar subimages in such a speckle reconstruction. We design and implement a novel parallel method for speckle masking reconstruction of solar subimage on a shared memory machine using the OpenMP. Real tests are performed to verify the correctness of our codes. We present the details of several parallel reconstruction steps. The parallel implementation between various modules shows a great speed increase as compared to single thread serial implementation, and a speedup of about 2.5 is achieved in one subimage reconstruction. The timing result for reconstructing one subimage with 256×256 pixels shows a clear advantage with greater number of threads. This novel parallel method can be valuable in real-time reconstruction of solar images, especially after porting to a high performance cluster.

워터마킹을 내장한 웨이블릿기반 영상압축 코덱의 FPGA 구현 (FPGA Implementation of Wavelet-based Image Compression CODEC with Watermarking)

  • 서영호;최순영;김동욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.1787-1790
    • /
    • 2003
  • In this paper. we proposed a hardware(H/W) structure which can compress the video and embed the watermark in real time operation and implemented it into a FPGA platform using VHDL(VHSIC Hardware Description Language). All the image processing element to process both compression and reconstruction in a FPGA were considered each of them was mapped into H/W with the efficient structure for FPGA. The global operations of the designed H/W consists of the image compression with the watermarking and the reconstruction, and the watermarking operation is concurrently operated with the image compression. The implemented H/W used the 59%(12943) LAB(Logic Array Block) and 9%(28352) ESB(Embedded System Block) in the APEX20KC EP20K600CB652-7 FPGA chip of ALTERA, and stably operated in the 70㎒ clock frequency over. So we verified the real time operation, 60 fields/sec(30 frames/sec).

  • PDF

실시간 영상 복원을 위한 분산 전기단층촬영 알고리즘 (A Distributed Electrical Impedance Tomography Algorithm for Real-Time Image Reconstruction)

  • Junghoon Lee;Gyunglin Park
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제10권1호
    • /
    • pp.25-36
    • /
    • 2004
  • 본 논문은 전기단층촬영의 실시간 영상 복원을 위한 마스터-슬레이브 구조를 갖는 분산 전기 단층촬영 알고리즘을 제안하고 그 성능을 평가한다. 영상복원은 그 수행시간이 미지수의 수에 3제곱에 비례하는 계산 위주의 응용으로서 영상의 정밀도를 위해 미지수를 증가시키면 그 수행시간이 급격히 증가한다. 마스터는 순차적인 루프에 진입하기 전에 각 컴퓨팅 노드에 독립적인 프레임 데이터를 분배하여 병렬로 기저노드를 추출하도록 하고 그 결과를 취합하여 그룹화함으로써 미지수의 수를 감소시킨다. 지역망으로 연결된 컴퓨팅 노드들은 MATLAB이 설치되어 기본적인 계산능력을 갖고 있으며 MATLAB 자료구조를 효율적으로 교환할 수 있는 명령이 동적 링크 라이브러리로 구현되어 있다. 또한 마스터에는 병렬 행렬 연산, 고속 자코비언 둥이 구현되어 순차적인 부분의 계산을 효율적으로 수행한다. 구현된 각 요소들의 성능을 측정한 결과 병렬 라이브러리는 전체 복원 시간을 50% 가까이 감소시킬 수 있으며 분산 알고리즘은 4개의 노드가 협력작업을 하는 경우 주어진 대상 물체에 대해 12배 빠른 속도로 영상을 복원할 수 있다.

Fast Holographic Image Reconstruction Using Phase-Shifting Assisted Depth Detection Scheme for Optical Scanning Holography

  • Lee, Munseob;Min, Gihyeon;Kim, Nac-Woo;Lee, Byung Tak;Song, Je-Ho
    • ETRI Journal
    • /
    • 제38권4호
    • /
    • pp.599-605
    • /
    • 2016
  • For the implementation of a real-time holographic camera, fast and automatic holographic image reconstruction is an essential technology. In this paper, we propose a new automatic depth-detection algorithm for fast holography reconstruction, which is particularly useful for optical scanning holography. The proposed algorithm is based on the inherent phase difference information in the heterodyne signals, and operates without any additional optical or electrical components. An optical scanning holography setup was created using a heterodyne frequency of 4 MHz with a 500-mm distance and 5-mm depth resolution. The reconstruction processing time was measured to be 0.76 s, showing a 62% time reduction compared to a recent study.