AAZ G EEE AT £ A7

a9

>3 ¢d1dE 25

r

AL 93 H4s A% B4 AvASEA
A F
(A Distributed Electrical Impedance Tomography Algorithm
for Real-Time Image Reconstruction)

= t
oy =z

(Junghoon Lee) (Gyunglin Park)

2 o @ Epe WINEHEN AAT 34 240E AT Sae s P28 2= 24)
UE9 2TAEL AVIL 1 A5 YAt FPRAL 1 £ wAFe o) 3AF
ATE AL 979 EeTA I RUEE 949l tIASE SR T SNl Fel B
o nprEE #3499 230 Aely] dol 2 AR kmo) TPAY =AY voIHE Bused ¥

A=Eg FEASE sln 1 AAE ATl 1EAFOH vAFe] £§ BAAU AHTe
%9 AFE =25 MATLABe] 4250} 7124l AWsaS 2 1om MATLAB RETE
g0 Y ¢ ge Y] $4 Y2 doinae FUs) Ao £ seEdE ¥E 99
&, & AHd Sol FEslel A0 pyel AUE AgAo 4T, THY A 2289 4
2 249 2% 9Y colnsiels A Ha AL 50% A7kl BEAT & Yo ¥4 o_;w
1ol £/ WEAADE A BS T AP BA 0 120 #E S5 IS 2E + stk
A AAZ GARY, FesH ARG, 4 dueld, 3 doluee, ¥Y :T%l

“: or r2 mlm Hu [

Abstract This paper proposes and measures the performance of a distributed EIT (Electrical
Impedance Tomography) image reconstruction algorithm which has a master-slave structure. The
image construction is a computation based application of which the execute time is proportional to the
cube of the unknowns. After receiving a specific frame from the master, each computing node extracts
the basic elements by executing the first iteration of Kalman Fiiter in parallel. Then the master merges
the basic element lists into one group and then performs the sequential iterations with the reduced
number of unknowns. Every computing node has MATLAB functions as well as extended library
implemented for the exchange of MATLAB data structure. The master implements another libraries
such as threaded multiplication, partitioned inverse, and fast Jacobian to improve the speed of the serial
execution part. The parallel library reduces the reconstruction time of image visualization about by
half, while the distributed grouping scheme further reduces by about 12 times for the given target
object when there are 4 computing nodes.

Key words ® real-time image reconstruction, cluster computing, distributed algorithm, parallel

library, cooperative grouping

1. Introduction points of view since they can be used as an

. alternative imaging modality for monitoring tool in

Over the past few decades, EIT(Electrical Impe-

. . many engineering fields[1]. This is mainly due to

dance Tomography) techniques have received much . . .

.] A the relatively cheap hardware requirements, nonin-
attention from both theoretical and experimental

vasive measurement manner in sensing the signal,

tA Y AFNGE ALEAYH a5 and reasonable temporal resolution. The application
jhlee@cheju.ac.kr field includes heat exchangers, oil or natural gas
) 3 A AFdsta JAEA S uge
glpark@cheju.ac.kr
wERS 20083 49 119 basic assumption of the conventional EIT is that
Arlgtg 20039 119 5¢

pumping systems, fluidized beds and so on{Z2]. The

26 ARAFI=FRA FFE 44 A 10 E A 1 20042

the distribution of internal electrical properties is
stationary during the acquisition phase of full data
set. To collect the necessary data, several elec-
trodes are attached along the surface of the target
object. Figure 1(a) demonstrates that 16 electrodes
are evenly located around the surface of circular
target.

Predefined current patterns are injected through
each electrode one by one or simultaneously. For
an injection from a node, the other electrodes mea—
sure the voltage values, respectively. The obtained
data set builds up the equation system to be solved
for image reconstruction. Based on these data, the
reconstruction procedure virtually segments the
cross section of the target object into a number of
tiny elements as shown in Figure 1(b) and calcu-
lates their resistivities. That is, each element is an
unknown variable that should be solved while the

15

1y

13

1n q

le

(a) Electrode distribution

-4 -3‘ ~2‘ -1 0 1 2 3. 4
(b) Mesh Elements
Figure 1 The principle of EIT

measured voltages decide the coefficients of a
differential equation system.

Element size determines the resolution factor of
the visualized image. However, finer element parti-
tion does not always produce a better image as
EIT image reconstruction is a nonlinear ill-posed
inverse problem that makes it difficult to obtain a
stable and reliable result. As a result, the number
of electrodes mainly affects the determination of
element size. In addition, as the reconstruction
procedure involves various time-consuming matrix
operations such as multiplication, inverse, and Jaco-
bian, the computation time cannot possibly catch up
with the data acquisition speed, to say nothing of
real-time visualization. If there are n elements in
the mesh, most data structures are n*n matrices,
and the computation time of above-mentioned
operation is known as O(). To the worse, when
the algorithm is implemented with software tool
such as MATLAB without any support of specific
hardware, the computation time becomes too long.

For efficient and fast image reconstruction, the
performance improvement should be pursued via
parallel or distributed computing technology as well
as design of a new algorithm[3). If we tolerate
some degradation in the quality of the reconst-
ructed image, fast reconstruction scheme can be
designed as an instance of the imprecise algori-
thm[4]. The imprecise computation technique is a
way to improve the scheduling feasibility of app-
lications where results of poor quality are better
than late results. The imprecise computation model
assumes that the time constraint of each task is
given and that the quality of a task’s result is
solely dependent on the time and resources spent to
produce the result.

This paper describes and proposes performance
enhancement techniques for EIT, aiming at impro-
ving the speed of image reconstruction. The work
includes an implementation of parallel numerical
library and a proposition of distributed EIT algo-
rithm where each node cooperates to reduce the
number of elements, namely, that of unknowns.
This paper is organized as follows: After issuing
the problem in Section 1, Section 2 introduces the

AN G4 AL A

EIT

struction scheme. Section 3 focuses on the extended

background concept of the image recon—

libraries for parallel and distributed processing.
Section 4 proposes a cooperative grouping scheme
on top of the extended functions. After the results
are analyzed in Section 5, Section 6 finally summa-

rizes and concludes this paper.

2. Overview of EIT image reconstruction

The EIT problem is essentially equivalent to the
differential equation system where each element is
unknown variable. As natural, the system may be
either overdetermined or underdetermined, so it is
usually impossible to find a unique solution, espe-
cially when the measured voltages contain a certain
type of noise. Hence, most published algorithms
belong to the iterative one and they carry out as
follows repeatedly with an tentative guess of
unknowns:

1. calculates how well the solution fits

2. decides how to adjust the solution set

3. modifies the current solution

This procedure will continue until a reasonable
solution is found or within a limited number of
iterations. Iteration limit eliminates the possibility of
infinite loop, which happens when the estimation
diverges as the iteration goes on. The first step is
straightforward, and can be performed by substi-
tuting the current solution to the system. There
exist a several number of decision criteria for this
purpose, but RMSE(Root Mean Square Error)
scheme is generally used. In the context of EIT,
for p, a set of resistivity values for the respective
elements, it is possible to calculate the voltage
anticipated to be measured at each electrode. This
is the forward solver and it is generally based on
the finite element method observing the complete
electrode model[5]). The second step is specific to
each algorithm and a noticeable way is to use
Jacobian matrix, analogous to a first order deri-
vative. The third step also varies by the respective
algorithms ranging from a simple addition to a
With
step 2 and 3 can be

combination of compleX matrix operations.
respect to EIT system,
described as follows: To solve the inverse problem
we have used an approach in which we minimize

B3 AriesdEd ¢xe

iy

27

the functional

Plo)=|U— Up)*+ Lo — 0*)? (1)
for the resistivity p. As a result, the present
problem is to find the resistivity distribution both
satisfying the above constraint and minimizing the
the calculated boundary

difference between

potential, U(p), and the actually measured bound-
ary potential, U/. Additionally, L is a regularization
matrix, while @ is a regularization constant and p*
is an a priori guess for p. The solution is searched
iteratively by

0ir1= Pi+ 0p; (2)

where dp; is solved from

JTT+ a*LTL)op,= JI(U— Ulp)) — "L L(p;i—p") (3

In (3), J denotes the Jacobian matrix of p with
respect to U.

As can be inferred from (3), the reconstruction
procedure accompanies many matrix operations that
need severe computations, the EIT community has
been urgently pursuing an efficient way to reduce
tremendous reconstruction time, especially via pa-
rallel or distributed processing. However, there are
several difficulties in developing an efficient scheme
as the general tomography algorithms have strong
data dependencies between the iterative loops and
they contain so many 2-dimensional matrix oper-
ations. The data dependency can be partially solved
by revising a tomography algorithm, but even a
small modification may incurs an additional recon-
struction error due to its sensitivity to resistivity
model[6].

computation time parallel processing on matric mul-

Another approaches try to reduce the

tiplication and inverse[7]. Though they do not infect
the correctness of algorithm, their enhancement is
limited by expensive hardware in case of parallel
processing, by network overhead and so on.

3. The implementation of parallel and dis-
tributed functions for MATLAB

Recently, high-level languages such as MATLAB
have become popular in prototyping a complex
algorithm in domains such as signal and image
processing[8]. MATLAB provides a very high level
specification in a functional style and a rich set of

built-in matrix manipulation functions. Therefore,

28 BARAGI=FA : AFEY AA A 10 B A 1 ZQ0042)

we have implemented both our own and already
published algorithms. This code includes Newton-
Raphson as well as various Kalman Filters. On the
other hand, it is convenient for us to develop
parallel and distributed computing primitives using
C programming language, as they are closely
related with the underlying operating system. In
addition, there exists a case where C implemen-
tation is more efficient and convenient than
MATLAB
should use system call.

To resolve this conflict, MATLAB opens the way

for a linkage of itself with a communication library,

implementation, especially when we

which is usually implemented in C[9]. Figure 2
shows the principle how to extend MATLAB to a
distributed and parallel environment. Prerequisite is
programming interface to external software. The
supported platforms range from Windows to UNIX.
The function coded in C programming language is
compiled into a DLL(Dynamic Link Library) via
MEX utility. We will call this kind of program as
mex routine, and it can be directly called from the
MATLAB interpreter or M-file, relieving the bur-
den of any modification on the already developed
code. The mex routine should be able to correctly
handle the matrix representation mechanism of
MATLAB package, as its arguments and return
values are exchanged accordingly.

Communication interface
Other
components

External interface

Communication fibrary
(socket, winsock)

Operating Systems (Windows, Linux, Unix)

Figure 2 External interface to MATLAB

3.1 Parallel computing library

With the advent of PC including more than one
CPU, multiprocessor architecture is not an uncom-
mon programming environment even for the general
users. By multiprocessor, we mean that two or

more processors exchange data by accessing the
common shared memory through the high-speed
system bus only with a negligible overhead resul-
ted from bus arbitration. In this computing model,
the ability to partition a job and assign it to a
processor is the indispensable requirement for pa-
rallel processing. Hence, currently released operating
systems, running on the general-purpose PC, such
as Windows 2000 and the like are able to assign
the subpart of the given job to CPUs thread by
thread. After all, if a programmer is to enhance the
execution time based on the underlying multi-
processor framework, he (or she) should clearly
define threads first and then program each thread
routine.

Most MATLAB functions cannot be parallelized
efficiently on the diverse multiple processor plat-
forms, conflict with MATLAB's sophisticated me-
mory model and architecture. However, matrix
multiplication and inverse operation on MATLAB
can benefit via threaded programming greatly in
computation speed on the multiprocessor PC. The
parallel multiplication can be simply implemented if
we know the data structure of MATLAB's matrix
representation, which is shown in Figure 3. Each
matrix has a pointer variable and the real data part
is pointed by it.

Before creating threads, we simply create two
matrices, Bl and B2, and each of them contains
only pointer variable but not the data themselves.
Bl points to the first item of B, while B2 the
midst. Notice that not A but B is partitioned
because MATLAB stores each matrix item accor-
ding to column-major order. This step involves no
data copy. At last threads are created to execute
Cl = A % Bl, C2 = A * B2, respectively in parallel.
After waiting the termination of each thread by
synchronizing via WaitForSingleObject system call,

I Matrix A] rMatrix B_I | Create Threads |
Thread 1 Thread 2
A s Data Bs Data\

[Matrix 81 | [Matrix 82| [Combine C1.C2]

Figure 3 Threaded matrix multiplication

ANZ G4 BAL 99

into C
matrix by copying Cl and C2 to the data area of
C, which

reason. As the final data copy

the main program combines the results
is reserved in advance for efficiency
invokes just a
negligible overhead, the execution time of parallel
multiplication is reduced almost by half. The mex
routine can be easily extended to the case where
the number of CPU is more than 3.

In contrast to multiplication, matrix inverse does
not seem to have inherent parallelism in its exe-
cution. However, with the partition scheme as
shown in Figure 4, the procedure is divided into
several multiplications and one inverse for the
quarter matrix(10]. As the data elements are stored
sequentially in the memory, the vertical partition
The

known to

can be performed without any data copy.
partitioned

outperform the original one. In addition, inverse

inverse routine itself is

operation is able to benefit from the enhanced

performance of threaded multiplication scheme des-
cribed at the previous paragraph.

A A G { =G Az Az!
A= A = -
Aer A2 —Aa! A Gf Axt + Aot Ao G A At

G = (A —Ar Az Az) !

Figure 4 Partitioned matrix inversion

3.2 fast Jacobian program

The most efficient way to compute Jacobian is to
use the so called an adjoined approach[6], where
the computation is divided into several multipli-
in Figure 5. The code is
MATLAB implementation of the core part published
for general use. Though this is known as the most

cations as shown

efficient method that has ever published, yet the

Jacobian occupies the largest portion of execution

time.
1 J=zeros(size(U,2)*size(U0,2), size(Agrad,2));
2 for i=l:size(Agrad,2),
3 A=reshape(Agrad(:i), NNode, NNode);
4 JJ=U0. *1/rho(i)"2 *A* U,
5 JJ=1J06)
6 JCD=]T
7 end

Figure 5 MATLAB code for Jacobian

B4 ArigEEg dues 29

In our model that exploits 32 electrodes, we use
Jacobian matrix of 992 * 776, The x dimension of
J is the product of the number of electrodes and
that of
dimension is the number of elements in the target

injected current patterns, while the y
mesh. Hence, the x dimension is equal to the num-
ber of given equation or relation. U0 and U are
sets of expected and measured voltage, respec-
tively. Agrad is the system matrix describing the
equation system with sparse matrix whose dimen-
sion is 2825761%3104. First of all, C implementation
can expect an efficiency in treating
elements such as size(Agrad,2), NNode, 1/rho(i)2,
compared with MATLAB, as MATLAB handles

them as 2 dimensional matrices for consistency.

the scalar

The Jacobian consists of consecutive iterations
and each iteration is further divided into reshape
(line 3), 3 multiplications(line 4), and copy operation
(line 5). Reshape function changes the dimension of
a matrix without changing the values of element.
As for the C implementation of line 3, we can
avoid a number of explicit library calls by main-
taining a location pointer that advances for each
calling instance. This is due to the fact that each
column has the equal number of elements and
stores them with column major order in Agrad.
The copy operation at line 5 incurs an unavoidable
but insignificant overhead.

As for line 4, it is desirable that multiplication of
a scalar quantity such as 1/rho(i1)"2 should be
applied to the smallest size matrix directly to the
data area. A is such matrix, and let’'s denote
1/rho(i)2 = A as A’ from now on. In Addition, the
matrix operation for sparse matrix is much smaller
than that of full matrix. A’ is an extremely sparse
matrix. Note that both U0 and U are full matrices
that have hundreds of items in the respective rows.
The MATLAB execution, we found that the multi-
plication of U0.” and A’ automatically generates a
full matrix, magnifying the computation time of the
next matrix multiplications. Hence, if we enforce
the temporary intermediate matrix to a sparse one,
we can expect more efficiency. In addition, (A" =
U) generates sparser matrix than (U0 * A’). To
handle the sparse matrix operation, the DLL code
declares the data structure for sparse matrix accor-

30 AR =R AFEY A A 108 A 1 50042

ding to the common way, that is, representing each

nonzero element with the tuple, (row, column,
value){11]. The sufficient amount of memory should
be allocated to store tuples explicitly at the
beginning of mex routine via the MATLAB C
library function mxMalloc().

Based on this data structure, we have imple-
mented the following matrix multiplications:

(a) MATLAB sparse with MATLAB full matrix into
our own sparse matrix structure. (4”7 * U, say T)

(b) MATLAB full with our own sparse matrix
into the data block ordered by column. (U0.” * T)

The operation carefully considers the MATLAB
data structure shown in Figure 3. The result of (b)
can be easily returned to the caller after wrapping
the data block with the MATLAB matrix structure.

3.3 implementation of communication primitives

for MATLAB

For more than one MATLAB applications to
cooperate to achieve a common goal, they should
be able to exchange a matrix with one another,
whether they are located at the same node or not.
As the built-in functions of operating system can
also be called from the mex routine, IPC (Inter-
Process Communication) mechanisms such as
named pipe, window socket can provide a useful
functionalities to exchange MATLAB matrices[12].
For a reliable and efficient message delivery bet-
ween nodes connected via the communication
network such LAN(Local Area Network), we have
selected TCP(Transmission Control

Window socket library, as it performs ftransport

Protocol) of

layer functions including automatic error control. It
should be mentioned that this mex routine is
compiled with wsock32lib static library offered by
Visual C++,

Since TCP is a connection-oriented protocol, a
connection should be established between the par-
ticipants prior to the actual data exchange. For

Table 1 Map of argument to window socket functions

1-st arg. server client
1 socket socket
2 accept send
3 send recv
4 recv close
5 close

each connection, one plays a role of server, waiting
and then accepting a connection request, while the
other that of client. Hence, a series of system calls
for the connection management operation is provi-
ded in addition to the calls for data exchange. The
mex program should bridge between the MATLAB
user and the operating system by translating the
different data format and calling argument. To
begin with, it distinguishes the function requested
from the caller by the first argument as shown in
Table 1. The complex data structure on socket
library is hidden from the MATLAB command
interpreter, offering an easy interface to the
MATLAB user.

It is extremely important to handle the parameter
handed over to the mex routine as a MATLAB
matrix, which is entirely different from the data
type of C program. Especially, when an application
sends a matrix, the mex routine should correctly
map the data area of the given matrix to the buffer
parameter of send function. Oppositely, the receiver
should be able to construct a MATLAB matrix
from the received data block. To this end, the
receiver should know both the exact size and
dimension of the matrix, so such information should
be given via supplementary arguments from the
caller, In addition, the mex routine should convert
the socket descriptor, returned from the socket or
accept call as integer type of C language, into the
MATLAB matrix before return to the interpreter.
Figure 6 shows the sample MATLAB code where
client sends a matrix to the server after establi-
shing a connection. In this example, client sends a
matrix of size 776 * 992 named as R to the server,
and the server stores it as J after receiving the
data from the network. This function constructs a
MATLAB cluster. As shown in this example, the

pl = mes(1); pl = mec(l);
p2 = mcs(2, pl); mcc(2, pl);
J=mcs(4,p2,776,992),
mcs(5,p2); mcc(4,pl);
mes(5,pl);

(a) Server (b) Client

Figure 6 Example code for matrix exchange

AN 3 54 AT B ArEFEY ¢xdE 31

MATLAB user should do nothing but call mcc or
mes command on the command interpreter or in
M-file script. That is, client calls mce, actually
invoking mecc.dll, while the server mcs invoking
mes.dll.

4. Distributed Grouping algorithm

To begin with, we define a frame as the set of
measured voltages according to the injected current
from one node. From the point of software algo-
rithm, it doesn’t matter whether the injection is
performed at the electrodes sequentially or simul-
taneously. A frame needs 31*8 bytes. The is due to
the fact that for one injection from an electrode,
other 31 electrodes collect the data and store them
as a floating point data type. Among the tomo-—
graphy algorithms, Kalman filter approaches, linear
or extended, estimate internal image by sequentially
inspecting frames one by one[13], while some other
approaches such as Newton-Rapson take all frames
into account simultaneously. Though the Kalman
filter-based algorithm is faster than the others, its
execution time is still very long, as it contains a
number of time consuming operations such as
inverse, multiplication of the 2 dimension matrix
whose row and column are both proportional to the
number of elements. For our general purpose
Pentium III PC with 128 M memory and 600 MHz
clock speed, it takes about 56 seconds to process
one frame on average(excluding the first frame).
The data dependency is so strong that it is very
difficult to revise this program to a parallel or
distributed one.

As natural, the efficient way to enhance the
computation speed is to decrease the number of
elements with or without the loss of correctness of
the visualized image. When we can permit some
loss of quality in the reconstructed image, an
imprecise algorithm can be devised. Our strategy is
to eliminate the element whose value is decided in
the earlier iteration from the subsequent iterations.
The elimination means that some elements are
merged into one group and the group is treated as
if one element. The grouping method has been
proposed in several publications[14]. This strategy
is based on the assumption that the target object

(b) the image after 1-st iteration

Figure 7 Real and calculated images

consists of, or filled with, one base material
(known in advance) and some others. For example,
fluidized bed system contains water and other
substances.

Figure 7 shows an example where a material is
located around the center of true target. After the
first iteration, temporarily reconstructed image is
also shown in Figure 7(b). The figure implies that
there is some hindrance near the line extending the
through which the

current is injected. The elements belonging to this

material and the electrode
area need further iteration, but others may be
considered as a base material from the early stage
of iteration making the further computation unnece-
ssary.. That is, the elements that are below the
certain bound are inferred as base material
Remaining elements may be other material, base
material, or something else. Their resistivity values
will be turned out with the progress of the
iteration. But up to now, it cannot certain what
they are.

Kalman filter begins its execution just with a

32 BRAEGIH=EA)

(a) after 1-st iteration

(b) after 3-rd iteration
Figure 8 Sorted value of each element

certain initialization, and each of iterations pro-
cesses one frame. After the first iteration, it takes
into account the estimated values produced up to
the previous iteration. That is, the estimation after
the k-th iteration is the accumulated result for the
1, 2, ---, and k-th iterations not just the result of
k-th iteration. Hence, the first iteration can provide
the most useful information on whether an element
can be classified as the base material. In addition,
it takes only 1/4 of other iteration to complete the
first iteration as most matrices are initialized to
sparse ones.

Figure 8 plots the resistivity distribution for each
element, sorted by its value to demonstrate that
some elements can be classified as base material.
As shown in Figure 8, the image after the first
iteration shows stepwise pattern that helps classify
some element as base element, while the image
after 3-rd iteration shows still more complex shape
where the correct state of each element is not
decided yet. As shown in Figure 8(a), there is a

AFEE AA A 10 A A 1 B20042)

flat segment where graph shows almost horizontal
line. We can find this pseudo line segment by
inspecting the slope of consecutive points. We
choose the average of start and end points of flat
segment as the border value that classifies the
elements. The determination of border point is
another problem that is currently investigated.

The graph continues to be distorted for the time
being within a certain number of iterations. This is
due to the fact that the element fluctuates until it
converges. The current injection from a different
angle may draw a trace to the different direction.
As natural, after the sufficient number of iterations,
the image graph shows the correct internal struc-
ture of target object. As a result, if we discern the
element whose value is below the bound after the
first iteration and then mark as the base material,
the processing time of next iterations can be
reduced. Let such element be denoted as EI (Early
Identified) element. The bound is a tuneable para-
meter. The lower the bound, the larger group can
be obtained, resulting in more speed up but also
the possibility of erroneous evaluation.

The first iteration can begin with any frame. So
we make some nodes calculate the first iteration
with different frames in parallel and then a master
node combines the result. This enables us to maxi-
mize the number of EI element. Figure 9 shows the
overall distributed computing model proposed in this
paper, where 32 electrodes are attached. There are
4 computing nodes and each of them shares the
information and data structure such as mesh, node,
and element. After data acquisition, the master dis-
tributes 1, 8, 16, 24 frames respectively to slaves.
The frame number is separated as far as possible
to maximize the number of EI elements. Note that

[Measuring equiﬂ
Measured Data

Figure 9 The distributed computing model

ki3

AN 3 B9

tio

_?,]

there are 4 electrode groups in Figure 7(a) named
as a, b, ¢, and d. When there is just one com-
puting node, it calculates with the data obtained
from the current injection through the electrode
group a. When there are node computing nodes,
they groups the elements with the data set obtain-
ed from the injection through electrode groups a
and b. When 4 node, they calculates with groups a,
b, and ¢, while 8 nodes cooperates, with group a,
b, ¢, and d. The number of computing nodes is
identical to that of data sets.

Each node executes the first iteration with the
the

results are merged at the master. The traffic de-

allocated frame in parallel. After execution,
pends on the number of EI elements. The higher
the traffic, the more reduction in the subsequent
computation time is expected, though the increase

of data transfer time is not significant.

5. Performance measurement and discussion

Table 2 shows the performance characteristics of
master node. The specification .of slave node is
same except the number of CPU. Master node
needs more computing power because serial itera-
tions involve many time consuming operations on
full size matrices, while the other node mainly
manipulates sparse matrices in executing the first
iteration of Kalman Filter. With this PC, it takes
about 56 seconds to process one frame for original
MATLAB code. In addition, the network interface
of node as well as hub is 10 Mbps Ethernet.

The measurement of parallel multiplication shows
about 48 % reduction of computation time, while
%
down by parallel and decomposed calculations. The

that of matrix inversion shows about 64 cut

) 1 node (b) 2 nodes

i

B ANesEd ¢y 33

N

Table 2 Target machine description

CPU Pentium III
of CPU 2

0S Windows NT
Memory 128MB

calculation time of Jacobian has been cut down
to 0.01
remarkable enhancement results from the efficiency

from about 20 seconds second. This
of C language in manipulating scalar type data as
well as the efficiency of sparse matrix multi-
plication. Kalman Filter scheme, entirely program-
med with MATLAB M-files, consists of conse-
iteration that is further divided
FEM update,

spatial regularization, measurement update, and time

cutive into the

following steps: forward solution,
update. The developed library shows identical re-
constructed image with the original Kalman Filter
M-file for the same input parameters. The maxi-
mum difference ratio is measured as O(10).
Finally, the computation time has been cut down
from 56 to 29 seconds.

Return to the example target of Figure 7 to see
the effect of cooperative grouping scheme. Figure
10 depicts how many elements can be merged into
one group when 1, 2, 4, and 8 nodes cooperate,
respectively. The darker area specifies the elements
that can be classified as El. As this example has a
symmetric distribution, our cooperative scheme
maximizes performance improvement by also sym-
Note that the size of

element near the boundary is smaller than near the

metric frame allocation.

center. It is natural that the amount of grouped
element depends on the internal structure of the

target object, for example, how large portion is

(c) 4 nodes (d) 8 nodes

Figure 10 Grouped elements

34 BAEAF}I=EA : AFEY AA A 109 A 1 50042

filled with base material, or where non-base-
material is located, and so on. Besides, the perfor-
mance is very sensitive to the number of elements,
n, as most operation is O(n’). Table 3 shows the
final number of elements after grouping for the
respective experiments as well as the corresponding
execution time. The execution time of no group is
the result of just applying the parallel library and
fast implementation of Jacobian.

Notice that there is a great speed improvement
when the number of nodes changes from 1 to 2.
This enhancement implies the reduction in the
number of elements resulted from the large group
size according to the following facts: First, more
nodes can classify more elements having resistivity
value of base material. Second, the two nodes
processes with the data obtained by the injections
from the opposite directions, so they can get
independent EI's. Even if 4 or 8 nodes participate,
the speed improvement is not so dramatic since
many elements classified by respective nodes over-
lap with one another.

The cooperative method can dramatically reduce
the frame processing time from 29.796 to 1.937
when there are 8 nodes, revealing the possibility of
real-time image reconstruction via distributed
cluster computing. The proposed algorithm includes
data exchange overhead measured as small com-
pared to the total procedure as well as the pre-
grouping time amounted to 7.5 second. However,
subsequent frame processing time, has been dec-

reased significantly for the given example. As the
number of loop is equal to that of electrode, whole
speed up is very large. As natural, we can also
achieve a reasonable reconstruction time with the
upgrade on the platform components, for example,
higher performance CPU, more memory, faster
network interface, special hardware support like
DSP, and efficient numerical library. That may
enable even the real-time image reconstruction with
our algorithm.

We measure the performance of proposed
grouping scheme for the various targets as shown
in Figure 11. Figure 11(a) shows the case where
there is only one bubble near the electrode 1
(belonging to group a). Figure 11(b) shows that
there are 2 bubbles near electrode 1 and 16, while
Figure 11(c) shows 3 bubble case.

The number of groups after combining the EI
elements and corresponding reconstruction time are
shown in Table 4 for each target and for each
number of computing nodes. For the target of
Figure 11(a), there is little reduction(just 6) when
there is just one node, as the bubble locates near
the electrode. In contrast, another node manipulates
with the injection from the electrode at the opposite
side, the reduction is dramatic, reduction up to 464,
as the current can travel far away to the bubble
area. After that, the reduction is not so great even
then number of computing node increases. For the
target in Figure (b) and (c) where the internal

state is somewhat complex, we cannot expect an

Table 3 Frame processing time

No group 1 node 2 nodes 4 nodes 8 nodes
of elmt. 776 507 267 235 196
time 29.79% 15.344 3.375 2.484 1.937

(a) left bubble

(b) two bubbles

Figure 11 Various targets

(c) three bubbles

AAL B BEEE 9 2% A9 EY 4189 E 35
Table 4 The number of group and corresponding execution times
1 node 2 nodes 4 nodes 8 nodes
(a) 770 (29.125) 464 (8.115) 370 (4.906) 317 (3.429)
(b) 768 (29.122) 752 (28.301) 614 (16.301) 566 (13.086)
(c) 694 (22.697) 634 (21.950) 647 (18.732) 622 (16.879)
excellent grouping effect. However, as the matrix Vol.2, PTR PH, 1999.
operations are typically O(r’), even the small re- [4] W. Feng, J Liu, "An extended imprecise

duction in the number of elements can improve the
speed of reconstruction time.

6. Conclusion

In this paper, we have described and proposed
performance enhancement techniques for EIT, ai-
ming at high-speed image reconstruction. The work
includes an efficient parallel library for numerical
computing tools and a distributed EIT algorithm
where each node cooperates to reduce the number
of elements. The extended libraries have not only
halved the reconstruction time but also enabled
distributed computing. The proposed cooperative
computing algorithm has reduced the frame pro-
cessing time dramatically from 29.796 to 1937
when there are 8 nodes, revealing the possibility of
real-time image reconstruction. Though the group-
ing effect depends on the internal structure of the
given object, we can expect more performance
improvement via larger group with more computing
nodes. In addition, the border value, which decides
whether an element can be grouped or not, is a
tuneable parameter. As a future work, we will build
a computing cluster with MPI(Message Passing
Interface)(15] and a numerical library on top of
LINUX operating
distributed algorithm that can enhance the recon-

system, and then develop a

struction speed.

References

[1] M. Cheney, et. al, "Electrical impedance tomo
graphy,” SIAM Review, No, 41, pp.85~101, 1999.
M. Kim, S. Kim, K. Kim,]J. Lee, Y. Lee,

Reconstruction of particle concentration distri-

[2]

in annular Coutte flow using -electrical
Journal of Industrial En-
gineering Chemistry, Oct. 2001.

bution

impedance tomography,

[31 R. Buyya, High Performance Cluster Computing,

[5]

(6]

(7]

(81

(9]

[10]

[11]

[12]

(13]

[14]

(15]

computation model for time-constrained speech
processing and generation,” IEEE Workshop on
Real-Time Applications, pp.76~80, May 1993.

M. Vauhkonen, et. al., "A MATLAB Package for
the EIDORS
dimensional EIT images”, Physiology Measure-
ment, vol. 22, pp.107~111, 2001.

R. Johnson,

project to reconstruct two-

S. Jayaram, L. Sun,]. Zalewski
"Distributed Processing Kalman Filter for Auto-
mated Vehicle Parameter Estimation: A Case
Study,” IASTED Int’'l Conference on Control and
Applications, Banff, Alberta, Canada, July 24~26,
2000.

Woo EJ, Hua P, Webster]G, Tomkins W],
Pallas-Aren, "A

algorithm and its parallel implimentation in elec—

robust image reconstruction
trical impedance tomography,” IEEE Trans. on
Medical Imaging, 12(2), pp.137~146, 1993,
http://www.mathworks.com

S. Pawletta, and et. al., "A MATLAB toolbox for
distributed and parallel processing,” Proc. MAT-
LAB Conference, 1995.

K. Gallivan, et. al.,, Parallel Algorithms for Matrix
Computations, SIAM, 1990.

E. Horowitz, S. Sahni, S. Anderson, Fundamentals
of Data Structures in C, Computer Science Press,
1995.

B. Quinn, D. Schute, Windows Sockets Network
Programming, Addison-Wesley, 1995.

M. Vauhkonen, et. al, "A Kalman filter approach
to track fast
impedance tomography,” IEEE Trans. on Biome—
1998.
Lee.,
field with mesh
Eng. & Design,

impedance changes in electrical

dical Engineering, pp.486~493,
K. H Cho, S. Kim, Y.]J.
imaging of two-phase flow

"Impedance

grouping algorithm,” Nuclear
pp.18~26, 2001.

P. Pacheco,
Morgan-Kaufmann Publishers, 1997.

Parallel Programming with MPI,

36 BRF=EA AFEY AA A 109 A 1 5(004.2)

ol F

1988d Mgtistn ZFEFeH FHAL
1990d M&distn HAFE T AAL
1996 Agoistm AFEFSG PA}
19961 ~1996d 54 FFAETH
Ada7d 19979 ~3A AU A
FEATF w2y, BAPoke AL B
4, 85 A2, derdo] F4

%7
19864 Fuisa ARALES B8
19024 SARSFY AFEFAS 44
19749 IARsFYY AFEFAS W
1908~ A AFWSEL ANFA%
2, DR B/ Az A2d,
°F g A2d, AFe YueAF, A

5 ¥t 5

