• Title/Summary/Keyword: real-time behavior

Search Result 983, Processing Time 0.031 seconds

Real-Time Simulation of an Excavator Considering the Functional Valves of the MCV (MCV의 기능밸브를 고려한 굴삭기의 실시간 시뮬레이션)

  • Im, Yong-Hyeon;Lee, Sang-Wook;Cho, Min-Gi;Shin, Dae-Young;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.38-47
    • /
    • 2019
  • In this paper, a real-time simulation model of an excavator using Amesim was proposed, considered the operation of functional valves with the main control valve (MCV). The hydraulic system models including the pump and MCV have been developed. The kinematic and dynamic models of the manipulator have also been developed, to confirm the behavior of the excavator. The MCV model includes various functional valves such as the regenerative valves, holding valves, swing and boom priority valves, and regen-cut valves so that simulations similar to real excavators can be performed. Additionally, to obtain the real-time calculation performance, the parts with no major influence on the dynamic behavior were simplified, high frequency factors were removed, and parameters were optimized. The models were compared with each other through the numerical analysis with variable time-step and fixed time-step, and the results were verified by comparison with the results of the actual vehicle tests.

Real-Time Optimal Control for Nonlinear Dynamical Systems Based on Fuzzy Cell Mapping

  • Park, H.T.;Kim, H.D.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.388-388
    • /
    • 2000
  • The complexity of nonlinear systems makes it difficult to ascertain their behavior using classical methods of analysis. Many efforts have been focused on the advanced algorithms and techniques that hold the promise of improving real-time optimal control while at the same time providing higher accuracy. In this paper, a fuzzy cell mapping method of real-time optimal control far nonlinear dynamical systems is proposed. This approach combines fuzzy logic with cell mapping techniques in order to find the optimal input level and optimal time interval in the finite set which change the state of a system to achieve a desired obiective. In order to illustrate this method, we analyze the behavior of an inverted pendulum using fuzzy cell mapping.

  • PDF

Development of a Real-time Communication Service over Random Medium Access Scheme Networks

  • Choo, Young-Yeol;Kwon, Jang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.350-353
    • /
    • 2004
  • The increasing use of Ethernet-TCP/IP network in industry has led to the growing interest in its reliability in real-time applications such as automated manufacturing systems and process control systems. However, stochastic behavior of its medium access scheme makes it inadequate for time-critical applications. In order to guarantee hard real-time communication service in Ethernet-TCP/IP network, we proposed an algorithm running over TCP/IP protocol stack without modification of protocols. In this paper, we consider communication services guaranteeing deadlines of periodic real-time messages over MAC protocols that have unbounded medium access time. We propose a centralized token scheduling scheme for multiple access networks. The token is used to allow a station to transmit its message during the time amount that is appended to the token. The real-time performance of the proposed algorithm has been described.

  • PDF

A Probabilistic Analysis for Periodicity of Real-time Tasks

  • Delgado, Raimarius;Choi, Byoung Wook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.134-142
    • /
    • 2021
  • This paper proposes a probabilistic method in analyzing timing measurements to determine the periodicity of real-time tasks. The proposed method fills a gap in existing techniques, which either concentrate on the estimation of worst-case execution times, or do not consider the stochastic behavior of the real-time scheduler. Our method is based on the Z-test statistical analysis which calculates the probability of the measured period to fall within a user-defined standard deviation limit. The distribution of the measured period should satisfy two conditions: its center (statistical mean) should be equal to the scheduled period of the real-time task, and that it should be symmetrical with most of the samples focused on the center. To ensure that these requirements are met, a data adjustment process, which omits any outliers in the expense of accuracy, is presented. Then, the Z-score of the distribution according to the user-defined deviation limit provides a probability which determines the periodicity of the real-time task. Experiments are conducted to analyze the timing measurements of real-time tasks based on real-time Linux extensions of Xenomai and RT-Preempt. The results indicate that the proposed method is able to provide easier interpretation of the periodicity of real-time tasks which are valuable especially in comparing the performance of various real-time systems.

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

A Study on Real-Time SOC Structure Behavior Evaluation System using Big Data (Big data를 이용한 실시간 SOC 구조물 거동분석 시스템 연구)

  • Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.691-695
    • /
    • 2023
  • Currently, the utilization of measurement results of the automated measurement system is very low and is at the level of providing only fragmentary measurement results. In this study, we are going to study a structure behavior analysis 3D display system with high precision and reliability for automated measurement data obtained by constructing big data by transmitting massive data values measured in real time to the cloud and using a Python-based algorithm. As a result of the study, as a system that can evaluate the behavior of a structure to a manager in real time, it provides analysis data in real time without significant restrictions regardless of the type of measurement data and sensor, and derived it as a 3D display. In addition, it was analyzed that the manager could grasp the behavior graph of the structure in real time and more easily judge the derivation of the weak part of the structure through data analysis. In the future, by analyzing the behavior of structures in three dimensions using past and present data, it is expected that more effective measurement results can be obtained in terms of repair, reinforcement, and maintenance of realistic structures.

Designing Real-time Observation System to Evaluate Driving Pattern through Eye Tracker

  • Oberlin, Kwekam Tchomdji Luther.;Jung, Euitay
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.2
    • /
    • pp.421-431
    • /
    • 2022
  • The purpose of this research is to determine the point of fixation of the driver during the process of driving. Based on the results of this research, the driving instructor can make a judgement on what the trainee stare on the most. Traffic accidents have become a serious concern in modern society. Especially, the traffic accidents among unskilled and elderly drivers are at issue. A driver should put attention on the vehicles around, traffic signs, passersby, passengers, road situation and its dashboard. An eye-tracking-based application was developed to analyze the driver's gaze behavior. It is a prototype for real-time eye tracking for monitoring the point of interest of drivers in driving practice. In this study, the driver's attention was measured by capturing the movement of the eyes in real road driving conditions using these tools. As a result, dwelling duration time, entry time and the average of fixation of the eye gaze are leading parameters that could help us prove the idea of this study.

The Profibus Timed Token MAC Protocol for Real-Time Communications

  • Lee, Hong-Hee;Kim, Gwan-Su;Jung, Eui-Heon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.691-694
    • /
    • 2003
  • This paper describes how to use Profibus networks to support real-time industrial communications, that is, how to ensure the transmission of real-time messages within a maximum bound time. Profibus is based on a simplified timed token protocol, which is a well-proved solution for the real-time communication systems. However, Profibus differs from the timed token protocol, thus the usual timed token protocol has to be modified in order to be applied in Profibus. In fact, the real-time solutions for networks based on the timed token protocol rely on the possibility of allocating specific bandwidth for the real-time traffic. This means that a minimum amount of time to transmit the real-time messages is always guaranteed whenever each token is arrived. In other words, with the Profibus protocol, at least, one real-time message should be transmitted per every token visit in the worst case. It is required to control medium access properly to satisfy the message deadlines. In this paper, we have presented how to obtain the optimal network parameter for the Profibus protocol. The selected network parameter is valid regardless of the behavior of asynchronous messages.

  • PDF

Real-time Abnormal Behavior Detection System based on Fast Data (패스트 데이터 기반 실시간 비정상 행위 탐지 시스템)

  • Lee, Myungcheol;Moon, Daesung;Kim, Ikkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1027-1041
    • /
    • 2015
  • Recently, there are rapidly increasing cases of APT (Advanced Persistent Threat) attacks such as Verizon(2010), Nonghyup(2011), SK Communications(2011), and 3.20 Cyber Terror(2013), which cause leak of confidential information and tremendous damage to valuable assets without being noticed. Several anomaly detection technologies were studied to defend the APT attacks, mostly focusing on detection of obvious anomalies based on known malicious codes' signature. However, they are limited in detecting APT attacks and suffering from high false-negative detection accuracy because APT attacks consistently use zero-day vulnerabilities and have long latent period. Detecting APT attacks requires long-term analysis of data from a diverse set of sources collected over the long time, real-time analysis of the ingested data, and correlation analysis of individual attacks. However, traditional security systems lack sophisticated analytic capabilities, compute power, and agility. In this paper, we propose a Fast Data based real-time abnormal behavior detection system to overcome the traditional systems' real-time processing and analysis limitation.

Real-time model updating for magnetorheological damper identification: an experimental study

  • Song, Wei;Hayati, Saeid;Zhou, Shanglian
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.619-636
    • /
    • 2017
  • Magnetorheological (MR) damper is a type of controllable device widely used in vibration mitigation. This device is highly nonlinear, and exhibits strongly hysteretic behavior that is dependent on both the motion imposed on the device and the strength of the surrounding electromagnetic field. An accurate model for understanding and predicting the nonlinear damping force of the MR damper is crucial for its control applications. The MR damper models are often identified off-line by conducting regression analysis using data collected under constant voltage. In this study, a MR damper model is integrated with a model for the power supply unit (PSU) to consider the dynamic behavior of the PSU, and then a real-time nonlinear model updating technique is proposed to accurately identify this integrated MR damper model with the efficiency that cannot be offered by off-line methods. The unscented Kalman filter is implemented as the updating algorithm on a cyber-physical model updating platform. Using this platform, the experimental study is conducted to identify MR damper models in real-time, under in-service conditions with time-varying current levels. For comparison purposes, both off-line and real-time updating methods are applied in the experimental study. The results demonstrate that all the updated models can provide good identification accuracy, but the error comparison shows the real-time updated models yield smaller relative errors than the off-line updated model. In addition, the real-time state estimates obtained during the model updating can be used as feedback for potential nonlinear control design for MR dampers.