• Title/Summary/Keyword: real-time RT-PCR

Search Result 659, Processing Time 0.025 seconds

Expression Analysis of OsCPK11 by ND0001 oscpk11 Mutants of Oryza sativa L. under Salt, Cold and Drought Stress Conditions (염분, 저온 및 가뭄 스트레스 조건에서 벼 ND0001 oscpk11 돌연변이체의 OsCPK11 발현 분석)

  • Kim, Hyeon-Mi;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.115-125
    • /
    • 2021
  • Calcium-dependent protein kinases (CDPKs) are known to be involved in regulating plant responses to abiotic stresses such as salinity, cold temperature and dehydration,. Although CDPKs constitute a large multigene family consisting of 31 genes in rice, only a few rice CDPKs' functions have been identified. Therefore, in order to elucidate the functions of OsCPK11 in rice, this study was intended to focus on the expression pattern analysis of OsCPK11 in wild type and ND0001 oscpk11 mutant plants under these abiotic stresses. For the salt, cold and drought stress treatment, seedlings were exposed to 200 mM NaCl, 4℃ and 20% PEG 6,000, respectively. RT-PCR and quantitative real-time PCR were performed to determine the expression patterns of OsCPK11 in wild type and ND0001 mutant plants. RT-PCR results showed that OsCPK11 transcripts in the wild type and heterozygous mutant were detected, but not in the homozygous mutant. Real-time PCR results showed that relative expression of OsCPK11 of wild type plants was increased and reached to the highest level at 24 hr, at 6 hr and at 24 hr under salt, cold and drought stress conditions, respectively. Relative expression of OsCPK11 of ND0001 homozygous plant was significantly reduced compared to that of wild type. These results suggested that oscpk11 homozygous mutant knocks out OsCPK11 and OsCPK11 might be involved in salt, cold and drought stress signaling by regulating its gene expression.

Detection and Quantification of Apple Stem Grooving Virus in Micropropagated Apple Plantlets Using Reverse-Transcription Droplet Digital PCR

  • Kim, Sung-Woong;Lee, Hyo-Jeong;Cho, Kang Hee;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.417-422
    • /
    • 2022
  • Apple stem grooving virus (ASGV) is a destructive viral pathogen of pome fruit trees that causes significant losses to fruit production worldwide. Obtaining ASGV-free propagation materials is essential to reduce economic losses, and accurate and sensitive detection methods to screen ASGV-free plantlets during in vitro propagation are urgently necessary. In this study, ASGV was sensitively and accurately quantified from in vitro propagated apple plantlets using a reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assay. The optimized RT-ddPCR assay was specific to other apple viruses, and was at least 10-times more sensitive than RT-real-time quantitative PCR assay. Furthermore, the optimized RT-ddPCR assay was validated for the detection and quantification of ASGV using micropropagated apple plantlet samples. This RT-ddPCR assay can be utilized for the accurate quantitative detection of ASGV infection in ASGV-free certification programs, and can thus contribute to the production of ASGV-free apple trees.

Comparison of microbial molecular diagnosis efficiency within unstable template metagenomic DNA samples between qRT-PCR and chip-based digital PCR platforms

  • Dongwan Kim;Junhyeon Jeon;Minseo Kim;Jinuk Jeong;Young Mok Heo;Dong-Geol Lee;Dong Keon Yon;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.52.1-52.10
    • /
    • 2023
  • Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.

False-Negative Results of Real-Time Reverse-Transcriptase Polymerase Chain Reaction for Severe Acute Respiratory Syndrome Coronavirus 2: Role of Deep-Learning-Based CT Diagnosis and Insights from Two Cases

  • Dasheng Li;Dawei Wang;Jianping Dong;Nana Wang;He Huang;Haiwang Xu;Chen Xia
    • Korean Journal of Radiology
    • /
    • v.21 no.4
    • /
    • pp.505-508
    • /
    • 2020
  • The epidemic of 2019 novel coronavirus, later named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still gradually spreading worldwide. The nucleic acid test or genetic sequencing serves as the gold standard method for confirmation of infection, yet several recent studies have reported false-negative results of real-time reverse-transcriptase polymerase chain reaction (rRT-PCR). Here, we report two representative false-negative cases and discuss the supplementary role of clinical data with rRT-PCR, including laboratory examination results and computed tomography features. Coinfection with SARS-COV-2 and other viruses has been discussed as well.

Molecular cloning and expression analysis of annexin A2 gene in sika deer antler tip

  • Xia, Yanling;Qu, Haomiao;Lu, Binshan;Zhang, Qiang;Li, Heping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.467-472
    • /
    • 2018
  • Objective: Molecular cloning and bioinformatics analysis of annexin A2 (ANXA2) gene in sika deer antler tip were conducted. The role of ANXA2 gene in the growth and development of the antler were analyzed initially. Methods: The reverse transcriptase polymerase chain reaction (RT-PCR) was used to clone the cDNA sequence of the ANXA2 gene from antler tip of sika deer (Cervus Nippon hortulorum) and the bioinformatics methods were applied to analyze the amino acid sequence of Anxa2 protein. The mRNA expression levels of the ANXA2 gene in different growth stages were examined by real time reverse transcriptase polymerase chain reaction (real time RT-PCR). Results: The nucleotide sequence analysis revealed an open reading frame of 1,020 bp encoding 339 amino acids long protein of calculated molecular weight 38.6 kDa and isoelectric point 6.09. Homologous sequence alignment and phylogenetic analysis indicated that the Anxa2 mature protein of sika deer had the closest genetic distance with Cervus elaphus and Bos mutus. Real time RT-PCR results showed that the gene had differential expression levels in different growth stages, and the expression level of the ANXA2 gene was the highest at metaphase (rapid growing period). Conclusion: ANXA2 gene may promote the cell proliferation, and the finding suggested Anxa2 as an important candidate for regulating the growth and development of deer antler.

Evaluation of Potential Reference Genes for Quantitative RT-PCR Analysis in Fusarium graminearum under Different Culture Conditions

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.301-309
    • /
    • 2011
  • The filamentous fungus Fusarium graminearum is an important cereal pathogen. Although quantitative realtime PCR (qRT-PCR) is commonly used to analyze the expression of important fungal genes, no detailed validation of reference genes for the normalization of qRT-PCR data has been performed in this fungus. Here, we evaluated 15 candidate genes as references, including those previously described as housekeeping genes and those selected from the whole transcriptome sequencing data. By a combination of three statistical algorithms (BestKeeper, geNorm, and NormFinder), the variation in the expression of these genes was assessed under different culture conditions that favored mycelial growth, sexual development, and trichothecene mycotoxin production. When favoring mycelial growth, GzFLO and GzUBH expression were most stable in complete medium. Both EF1A and GzRPS16 expression were relatively stable under all conditions on carrot agar, including mycelial growth and the subsequent perithecial induction stage. These two genes were also most stable during trichothecene production. For the combined data set, GzUBH and EF1A were selected as the most stable. Thus, these genes are suitable reference genes for accurate normalization of qRT-PCR data for gene expression analyses of F. graminearum and other related fungi.

Effective microbial molecular diagnosis of periodontitis-related pathogen Porphyromonas gingivalis from salivary samples using rgpA gene

  • Jinuk Jeong;Yunseok Oh;Junhyeon Jeon;Dong-Heon Baek;Dong Hee Kim;Kornsorn Srikulnath;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.13.1-13.8
    • /
    • 2023
  • Importance of accurate molecular diagnosis and quantification of particular disease-related pathogenic microorganisms is highlighted as an introductory step to prevent and care for diseases. In this study, we designed a primer/probe set for quantitative real-time polymerase chain reaction (qRT-PCR) targeting rgpA gene, known as the specific virulence factor of periodontitis-related pathogenic bacteria 'Porphyromonas gingivalis', and evaluated its diagnostic efficiency by detecting and quantifying relative bacterial load of P. gingivalis within saliva samples collected from clinical subjects. As a result of qRT-PCR, we confirmed that relative bacterial load of P. gingivalis was detected and quantified within all samples of positive control and periodontitis groups. On the contrary, negative results were confirmed in both negative control and healthy groups. Additionally, as a result of comparison with next-generation sequencing (NGS)-based 16S metagenome profiling data, we confirmed relative bacterial load of P. gingivalis, which was not identified on bacterial classification table created through 16S microbiome analysis, in qRT-PCR results. It showed that an approach to quantifying specific microorganisms by applying qRT-PCR method could solve microbial misclassification issues at species level of an NGS-based 16S microbiome study. In this respect, we suggest that P. gingivalis-specific primer/probe set introduced in present study has efficient applicability in various oral healthcare industries, including periodontitis-related microbial molecular diagnosis field.

Single-tube nested reverse transcription-polymerase chain reaction for simultaneous detection of genotyping of porcine reproductive and respiratory syndrome virus without DNA carryover contamination (DNA 교차오염 방지기능이 있는 single-tube nested reverse transcription-polymerase chain reaction을 이용한 돼지생식기호흡기증후군바이러스 유전형 감별진단)

  • Jeong, Pil-Soo;Park, Su-Jin;Kim, Eun-Mi;Park, Ji-Young;Park, Yu-Ri;Kang, Dae-Young;Cha, Hyun-Ouk;Lee, Kyoung-Ki;Kim, Seong-Hee;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.39 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • In the study, we developed and evaluated a uracil N-glycosylase (UNG)-supplemented single-tube nested reverse transcription-polymerase chain reaction (UsnRT-PCR) assay that can carried out first-round RT-PCR and second-round nested PCR in a reaction tube without reaction tube opening and can simultaneously detect EU- and NA-PRRSV. The UsnRT-PCR confirmed to have a preventing ability of mis-amplification by contamination of pre-amplified PRRSV DNA from previous UsnRT-PCR. Primer specificities were evaluated with RNAs extracted from 8 viral strains and our results revealed that the primers had a high specificity for both genotypes of PRRSV. The sensitivity of the UsnRT-PCR was 0.1 $TCID_{50}$/0.1 mL for EU- or NA-PRRSV, respectively, which is comparable to that of previously reported real time RT-PCR (RRT-PCR). Clinical evaluation on 110 field samples (60 sera and 50 lung tissues) by the UsnRT-PCR and the RRT-PCR showed that detection rates of the UsnRT-PCR was 70% (77/110), and was relatively higher than that of the RRT-PCR (69.1%, 76/110). The percent positive or negative agreement of the UsnRT-PCR compared to RRT-PCR was 96.1% (73/76) or 90.9% (30/33), showing that the test results of both assays may be different for some clinical samples. Therefore, it is recommend that diagnostic laboratory workers use the two diagnostic assays for the correct diagnosis for the relevant samples in the swine disease diagnostic laboratories. In conclusion, the UsnRT-PCR assay can be applied for the rapid, and reliable diagnosis of PRRSV without concerns about preamplified DNA carryover contamination that can occurred in PCR process in the swine disease diagnostic laboratories.

Developing peptide nucleic acid based multiplex real time RT-PCR to detect Foot-and-Mouth-Disease virus Serotype A (구제역바이러스 혈청형 A 검출을 위한 peptide nucleic acid (PNA)기반 multiplex real-time RT-PCR 개발)

  • Lee, Jin-Woo;Lee, Sumee;Nah, Jin-Ju;Ryoo, Soyoon;Shin, Moon-Kyun;Kim, Taeseong;Ha, Byeong-Suk;Lee, Hyun-Ji;Park, Hye-Jin;Lee, Jeong-Won;Jung, Semin;Wee, Sung-Hwan;Ku, Bok-Kyung
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • There have been a total tenth FMD outbreaks in Korea and for the first time, type O and A were detected simultaneously in 2017, which led to difficulties in FMD control. For the effective prevention of FMD, the importance of discrimination of serotypes became greater. Therefore, the most urgent requirement in case of FMD outbreak is differential diagnosis of serotypes. In this study, we developed a PNA probe-mediated multiplex real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using the peptide nucleic acid (PNA) probe, which is known to be stable to nucleotide mutation and that could specifically detect the all FMDV serotype A, FMDVA Yeoncheon strain which was occurred in Korea in 2017, and FMDV A viruses shown 96% similarity with FMDVA/Yeoncheon strain, at the same time. Therefore, It is believed that the newly introduced FMDVA will be effectively diagnosed using the PNA probe multiplex RT-PCR developed in this study, and ultimately contribute to the prevention of FMD.