• Title/Summary/Keyword: real time measurement

Search Result 2,178, Processing Time 0.032 seconds

Prediction of Target Motion Using Neural Network for 4-dimensional Radiation Therapy (신경회로망을 이용한 4차원 방사선치료에서의 조사 표적 움직임 예측)

  • Lee, Sang-Kyung;Kim, Yong-Nam;Park, Kyung-Ran;Jeong, Kyeong-Keun;Lee, Chang-Geol;Lee, Ik-Jae;Seong, Jin-Sil;Choi, Won-Hoon;Chung, Yoon-Sun;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.132-138
    • /
    • 2009
  • Studies on target motion in 4-dimensional radiotherapy are being world-widely conducted to enhance treatment record and protection of normal organs. Prediction of tumor motion might be very useful and/or essential for especially free-breathing system during radiation delivery such as respiratory gating system and tumor tracking system. Neural network is powerful to express a time series with nonlinearity because its prediction algorithm is not governed by statistic formula but finds a rule of data expression. This study intended to assess applicability of neural network method to predict tumor motion in 4-dimensional radiotherapy. Scaled Conjugate Gradient algorithm was employed as a learning algorithm. Considering reparation data for 10 patients, prediction by the neural network algorithms was compared with the measurement by the real-time position management (RPM) system. The results showed that the neural network algorithm has the excellent accuracy of maximum absolute error smaller than 3 mm, except for the cases in which the maximum amplitude of respiration is over the range of respiration used in the learning process of neural network. It indicates the insufficient learning of the neural network for extrapolation. The problem could be solved by acquiring a full range of respiration before learning procedure. Further works are programmed to verify a feasibility of practical application for 4-dimensional treatment system, including prediction performance according to various system latency and irregular patterns of respiration.

  • PDF

Analyzing Contextual Polarity of Unstructured Data for Measuring Subjective Well-Being (주관적 웰빙 상태 측정을 위한 비정형 데이터의 상황기반 긍부정성 분석 방법)

  • Choi, Sukjae;Song, Yeongeun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.83-105
    • /
    • 2016
  • Measuring an individual's subjective wellbeing in an accurate, unobtrusive, and cost-effective manner is a core success factor of the wellbeing support system, which is a type of medical IT service. However, measurements with a self-report questionnaire and wearable sensors are cost-intensive and obtrusive when the wellbeing support system should be running in real-time, despite being very accurate. Recently, reasoning the state of subjective wellbeing with conventional sentiment analysis and unstructured data has been proposed as an alternative to resolve the drawbacks of the self-report questionnaire and wearable sensors. However, this approach does not consider contextual polarity, which results in lower measurement accuracy. Moreover, there is no sentimental word net or ontology for the subjective wellbeing area. Hence, this paper proposes a method to extract keywords and their contextual polarity representing the subjective wellbeing state from the unstructured text in online websites in order to improve the reasoning accuracy of the sentiment analysis. The proposed method is as follows. First, a set of general sentimental words is proposed. SentiWordNet was adopted; this is the most widely used dictionary and contains about 100,000 words such as nouns, verbs, adjectives, and adverbs with polarities from -1.0 (extremely negative) to 1.0 (extremely positive). Second, corpora on subjective wellbeing (SWB corpora) were obtained by crawling online text. A survey was conducted to prepare a learning dataset that includes an individual's opinion and the level of self-report wellness, such as stress and depression. The participants were asked to respond with their feelings about online news on two topics. Next, three data sources were extracted from the SWB corpora: demographic information, psychographic information, and the structural characteristics of the text (e.g., the number of words used in the text, simple statistics on the special characters used). These were considered to adjust the level of a specific SWB. Finally, a set of reasoning rules was generated for each wellbeing factor to estimate the SWB of an individual based on the text written by the individual. The experimental results suggested that using contextual polarity for each SWB factor (e.g., stress, depression) significantly improved the estimation accuracy compared to conventional sentiment analysis methods incorporating SentiWordNet. Even though literature is available on Korean sentiment analysis, such studies only used only a limited set of sentimental words. Due to the small number of words, many sentences are overlooked and ignored when estimating the level of sentiment. However, the proposed method can identify multiple sentiment-neutral words as sentiment words in the context of a specific SWB factor. The results also suggest that a specific type of senti-word dictionary containing contextual polarity needs to be constructed along with a dictionary based on common sense such as SenticNet. These efforts will enrich and enlarge the application area of sentic computing. The study is helpful to practitioners and managers of wellness services in that a couple of characteristics of unstructured text have been identified for improving SWB. Consistent with the literature, the results showed that the gender and age affect the SWB state when the individual is exposed to an identical queue from the online text. In addition, the length of the textual response and usage pattern of special characters were found to indicate the individual's SWB. These imply that better SWB measurement should involve collecting the textual structure and the individual's demographic conditions. In the future, the proposed method should be improved by automated identification of the contextual polarity in order to enlarge the vocabulary in a cost-effective manner.

Comparison of Sampling Methods for On-Farm Use Quick Test Procedure of Soil Nitrate (토양의 질산태질소 현장검정을 위한 시료 채취방법 비교)

  • Kang, Seong-Soo;Kim, Ki-In;Chung, Keun-Yook;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.32-37
    • /
    • 2005
  • The procedure of soil sampling for on-farm quick test of soil nitrate is very important to improve practical application without weighing or drying soil. To improve application of test strip reflectometer as a quick on-farm analytical procedure for the estimation of soil nitrate concentration, three sampling methods such as gravimetric sampling (GS), particle density sampling (PDS) and bulk density sampling (BDS) for on-farm analytical procedure were investigated with twelve soils of 45 to $281mg\;kg^{-1}$ nitrate nitrogen concentration. The nitrate nitrogen concentrations measured from different soils were compared with two analytical methods, ion electrode method as a standard laboratory analysis (SLA) and test strip reflectometer at three moisture conditions, viz. air dried soil, 20 and 40% of maximum water holding capacity (MWHC). Nitrate nitrogen concentration measured by test strip reflectometer was significantly correlated with that of SLA, and the coefficients of variation (CV) were in the range of 3.5 to 10.9%. These CV values less than 10.9% were thought to be acceptable for the measurement of soil nitrate as an on-farm real time analytical procedure. The nitrate nitrogen concentration by BDS for test strip reflectometer as well as ion electrode method was more similar to that of SLA compared with those by GS and PDS especially in case of moist soils. This result suggests that the BDS is more useful than GS and PDS in case of on-farm analytical procedure of soil nitrate for moist soils. Further the practical measurement by BDS could be improved by substituting the bottle cap with a larger container.

Validation of Extreme Rainfall Estimation in an Urban Area derived from Satellite Data : A Case Study on the Heavy Rainfall Event in July, 2011 (위성 자료를 이용한 도시지역 극치강우 모니터링: 2011년 7월 집중호우를 중심으로)

  • Yoon, Sun-Kwon;Park, Kyung-Won;Kim, Jong Pil;Jung, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.371-384
    • /
    • 2014
  • This study developed a new algorithm of extreme rainfall extraction based on the Communication, Ocean and Meteorological Satellite (COMS) and the Tropical Rainfall Measurement Mission (TRMM) Satellite image data and evaluated its applicability for the heavy rainfall event in July-2011 in Seoul, South Korea. The power-series-regression-based Z-R relationship was employed for taking into account for empirical relationships between TRMM/PR, TRMM/VIRS, COMS, and Automatic Weather System(AWS) at each elevation. The estimated Z-R relationship ($Z=303R^{0.72}$) agreed well with observation from AWS (correlation coefficient=0.57). The estimated 10-minute rainfall intensities from the COMS satellite using the Z-R relationship generated underestimated rainfall intensities. For a small rainfall event the Z-R relationship tended to overestimated rainfall intensities. However, the overall patterns of estimated rainfall were very comparable with the observed data. The correlation coefficients and the Root Mean Square Error (RMSE) of 10-minute rainfall series from COMS and AWS gave 0.517, and 3.146, respectively. In addition, the averaged error value of the spatial correlation matrix ranged from -0.530 to -0.228, indicating negative correlation. To reduce the error by extreme rainfall estimation using satellite datasets it is required to take into more extreme factors and improve the algorithm through further study. This study showed the potential utility of multi-geostationary satellite data for building up sub-daily rainfall and establishing the real-time flood alert system in ungauged watersheds.

Development of Smart Packaging for Cream Type Cosmetic (크림 제형 화장품용 스마트 패키징 기술 개발)

  • Jeon, Sooyeon;Moon, Byounggeoun;Oh, Jaeyoung;Kang, Hosang;Jang, Geun;Lee, Kisung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.79-87
    • /
    • 2019
  • The degree of cosmetic's oxidation depends on the storage conditions and external conditions when using the product. The microbial contamination and oxygen exposure often results in the quality deterioration of cosmetics. In addition, the problem is that consumers often use cream-type cosmetics, which have short expiration period (6-12 months), even after the product is expired. When using the deteriorated cosmetics, it can be fatal to consumers' safety including some symptoms such as folliculitis, rashes, edema, and dermatitis. Therefore, it is necessary to develop sealed smart packaging for cosmetics to prevent the deterioration of cosmetics and improve consumer safety. In this study, we have developed smart packaging design for cosmetics that can measure the surrounding environment and expiration date for the cosmetics in the real time. In addition, the smart packaging includes sensor, which are linked to the mobile application. Users can find out the measurement results through the application. Also, the packaging design and functions were set up based on the survey results by the user and feasible model can be produced based on user choice. The measurement in the three environment has been done after manufactured the sensor, PCB, and mobile application. As a result, it works normally within a certain range under all three environmental conditions. It is believed that the information on expiration dates and storage environment can be efficiently delivered to the consumers through developed cosmetics smart packaging and applications. The development of UI/UX design for consumer is further studied. The UX/UI design of the application plays an essential role in achieving this goal through the commercialization the cosmetic products in the wide range.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

An Exploratory Study on Measuring Brand Image from a Network Perspective (네트워크 관점에서 바라본 브랜드 이미지 측정에 대한 탐색적 연구)

  • Jung, Sangyoon;Chang, Jung Ah;Rho, Sangkyu
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.4
    • /
    • pp.33-60
    • /
    • 2020
  • Along with the rapid advance in internet technologies, ubiquitous mobile device usage has enabled consumers to access real-time information and increased interaction with others through various social media. Consumers can now get information more easily when making purchase decisions, and these changes are affecting the brand landscape. In a digitally connected world, brand image is not communicated to the consumers one-sidedly. Rather, with consumers' growing influence, it is a result of co-creation where consumers have an active role in building brand image. This explains a reality where people no longer purchase products just because they know the brand or because it is a famous brand. However, there has been little discussion on the matter, and many practitioners still rely on the traditional measures of brand indicators. The goal of this research is to present the limitations of traditional definition and measurement of brand and brand image, and propose a more direct and adequate measure that reflects the nature of a connected world. Inspired by the proverb, "A man is known by the company he keeps," the proposed measurement offers insight to the position of brand (or brand image) through co-purchased product networks. This paper suggests a framework of network analysis that clusters brands of cosmetics by the frequency of other products purchased together. This is done by analyzing product networks of a brand extracted from actual purchase data on Amazon.com. This is a more direct approach, compared to past measures where consumers' intention or cognitive aspects are examined through survey. The practical implication is that our research attempts to close the gap between brand indicators and actual purchase behavior. From a theoretical standpoint, this paper extends the traditional conceptualization of brand image to a network perspective that reflects the nature of a digitally connected society.

Climate-Smart Agriculture (CSA)-Based Assessment of a Rice Cultivation System in Gimje, Korea (한국 김제의 벼 경작 시스템의 기후스마트농업 (Climate-Smart Agriculture) 기반의 평가)

  • Talucder, Mohammad Samiul Ahsan;Kim, Joon;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.235-250
    • /
    • 2021
  • The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Volume Rendering System of e-Science Electron Microscopy using Grid (Gird를 이용한 e-사이언스 전자현미경 볼륨 랜더링 시스템)

  • Jeong, Won-Gu;Jeong, Jong-Man;Lee, Ho;Choe, Sang-Su;Ahn, Young-heon;Hur, Man-Hoi;Kim, Jay;Kim, Eunsung;Jung, Im Y.;Yeom, Heon Y.;Cho, Kum Won;Kweon, Hee-Seok
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.560-564
    • /
    • 2007
  • Korea Basic Science Institute(KBSI) has three general electron microscopes including High Voltage Electron Microscope(HVEM) which is the only one in Korea. Observed images through an electron microscope are what they are tilted by each step and saved, offering the more better circumstances for observers, a reconstruction to 3D could be a essential process. In this process, a warping method decreases distortions maximumly of avoided parts of a camera's focus. All these image treatment processes and 3D reconstruction processes are based on an accompaniment of a highly efficient computer, a number of Grid Node Personal computers share this process in a short time and dispose of it. Grid Node Personal computers' purpose is to make an owner can share different each other and various computing resources efficiently and also Grid Node Personal computers is applying to solve problems like a role scheduling needed for a constructing system, a resource management, a security, a capacity measurement, a condition monitoring and so on. Grid Node Personal computers accomplish roles of a highly efficient computer that general individuals felt hard to use, moreover, a image treatment using the warping method becomes a foundation for reconstructing to more closer shape with an real object of observation. Construction of the electron microscope volume 랜더링 system based on Grid Node Personal computer through the warping process can offer more convenient and speedy experiment circumstances to observers, and makes them meet with experiment outcome that is similar to real shapes and is easy to understand.

  • PDF