• Title/Summary/Keyword: real road network

Search Result 196, Processing Time 0.028 seconds

Lane Detection System using CNN (CNN을 사용한 차선검출 시스템)

  • Kim, Jihun;Lee, Daesik;Lee, Minho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • Lane detection is a widely researched topic. Although simple road detection is easily achieved by previous methods, lane detection becomes very difficult in several complex cases involving noisy edges. To address this, we use a Convolution neural network (CNN) for image enhancement. CNN is a deep learning method that has been very successfully applied in object detection and recognition. In this paper, we introduce a robust lane detection method based on a CNN combined with random sample consensus (RANSAC) algorithm. Initially, we calculate edges in an image using a hat shaped kernel, then we detect lanes using the CNN combined with the RANSAC. In the training process of the CNN, input data consists of edge images and target data is images that have real white color lanes on an otherwise black background. The CNN structure consists of 8 layers with 3 convolutional layers, 2 subsampling layers and multi-layer perceptron (MLP) of 3 fully-connected layers. Convolutional and subsampling layers are hierarchically arranged to form a deep structure. Our proposed lane detection algorithm successfully eliminates noise lines and was found to perform better than other formal line detection algorithms such as RANSAC

Dynamic Traffic Light Control Scheme Based on VANET to Support Smooth Traffic Flow at Intersections (교차로에서 원활한 교통 흐름 지원을 위한 VANET 기반 동적인 교통 신호등 제어 기법)

  • Cha, Si-Ho;Lee, Jongeon;Ryu, Minwoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • Recently, traffic congestion and environmental pollution have occurred due to population concentration and vehicle increase in large cities. Various studies are being conducted to solve these problems. Most of the traffic congestion in cities is caused by traffic signals at intersections. This paper proposes a dynamic traffic light control (DTLC) scheme to support safe vehicle operation and smooth traffic flow using real-time traffic information based on VANET. DTLC receives instantaneous speed and directional information of each vehicle through road side units (RSUs) to obtain the density and average speed of vehicles for each direction. RSUs deliver this information to traffic light controllers (TLCs), which utilize it to dynamically control traffic lights at intersections. To demonstrate the validity of DTLC, simulations were performed on average driving speed and average waiting time using the ns-2 simulator. Simulation results show that DTLC can provide smooth traffic flow by increasing average driving speed at dense intersections and reducing average waiting time.

5GHz Wi-Fi Design and Analysis for Vehicle Network Utilization (차량용 네트워크 활용을 위한 5GHz WiFi 설계 및 분석)

  • Yu, Hwan-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.18-25
    • /
    • 2020
  • With the development of water internet technology, data communication between objects is expanding. Research related to data communication technology between vehicles that incorporates related technologies into vehicles has been actively conducted. For data communication between mobile terminals, data stability, reliability, and real-time performance must be guaranteed. The 5 GHz Wi-Fi band, which is advantageous in bandwidth, communications speed, and wireless saturation of the wireless network, was selected as the data communications network between vehicles. This study analyzes how to design and implement a 5 GHz Wi-Fi network in a vehicle network. Considering the characteristics of the mobile communication terminal device, a continuous variable communications structure is proposed to enable high-speed data switching. We simplify the access point access procedure to reduce the latency between wireless terminals. By limiting the Transmission Control Protocol Internet Protocol (TCP/IP)-based Dynamic Host Configuration Protocol (DHCP) server function and implementing it in a broadcast transmission protocol method, communication delay between terminal devices is improved. Compared to the general commercial Wi-Fi communication method, the connection operation and response speed have been improved by five seconds or more. Utilizing this method can be applied to various types of event data communication between vehicles. It can also be extended to wireless data-based intelligent road networks and systems for autonomous driving.

High Speed PLC-based Automatic Control System for a Smart LED Streetlight (스마트 LED 가로등을 위한 고속 전력선 통신 기반 자동제어 시스템)

  • Kim, Young-Suk;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.95-102
    • /
    • 2014
  • In this paper, we propose the high speed PLC-based automatic control system for a smart LED streetlight. The proposed the automatic control system were constructed of a power line modem part and monitoring part, streetlight controller part for the high speed communication frequency band and streetlight ballasts characterization and real-time remote control using a high-speed PLC network, and it was designed to meet to lighting grades conditions of KS road lighting standards. The proposed automatic control system were easy monitoring of the power consumption using PC through to the comparison result of the existing streetlight system. As a result, it was confirmed to the possibility of efficient operation for the real-time monitoring and maintenance by induction of reasonable power consumption through to the LED streetlight state checking and remote-control. In addition, we proved to improvement of expected effects for the power cost savings, the energy efficiency, and streetlight differentiation and advanced.

Vehicle Location Data Generator based on a User (사용자 지정 시나리오에 기반한 차량 위치 데이터 생성기)

  • Jung Young-Jin;Cho Eun-Sun;Ryu Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.101-110
    • /
    • 2006
  • ADevelopment of various geographic observations, GPS, and Wireless Communication technologies make it easy to control many moving objects and to build an intelligent transport system and transport vehicle management system. However it is difficult to make a suitable system in the real world with a variety of tests to evaluate the performance fairly because real vehicle data are not enough as evaluating and testing the transport plan in the system. Therefore some moving object data generator would be used in most researches. However they can not generate vehicle trajectory according to a user scenario defined to be applied to transport plan, because the existing data generators consider only a gauss distribution, road network. In this paper we design and implement a vehicle data generator for creating vehicle trajectory data based on the user-defined scenario. The designed data generator could make the vehicle location depending on user's transport plan. Besides we store the scenario as patterns and reutilize the used scenario.

  • PDF

A Study on Point Traffic Sensors' Placement for Detecting the Dilemma Zone Problem (딜레마 구간 검지를 위한 지점교통센서 배치에 관한 연구)

  • Jang, Jeong-Ah;Choi, Kee-Choo;Lee, Sang-Soo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.5
    • /
    • pp.26-37
    • /
    • 2009
  • This paper suggests a sensor's placement method for detecting the dilemma zone problem when real-time driver's safety service is provided at signalized intersections by multiple pointed traffic sensors using USN environments. For detecting the dangerous situations from vehicles accelerating through yellow intervals, red-light running and stopping abruptly like as dilemma zone problem, VISSIM(microscopic, behavior-based multi-purpose traffic simulation program) is used to perform a real-time multiple detection situation by changing the input data like as various inflow-volume, design speed change, driver perception and response time. As a result, the optimal interval of traffic sensors is 20~27m, and the initialized sensor location from stop-line is different according to road design speed. Moreover, the pattern of detection about dilemma zone is also different according to inflow-volumes. This paper shows that the method is useful to evaluate the sensor's placement problem based on micro-simulation and the results can be used as the basic research for USN services.

  • PDF

The Study on Operation Control & Management System of Bimodal Tram (바이모달트램 통합운영관리시스템 구축에 관한 연구)

  • Yoon, Hee-Taek;Park, Young-Kon;Lee, Kang-Won;Hwang, Eui-Kyeong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.181-187
    • /
    • 2011
  • Since 2003, state transportation study core technology development is being promoted as part of the bimodal trams operating in accordance with the development of refractive vehicle as research infrastructure for building high-tech road transport system has been the research and development. Bimodal trams of refraction as the vehicle for him to introduce domestic first ever operation management system also developed in Korea according to case-based technology system, but most of the country, and, in this study, mainly those based on technology integration building management system and the bimodal trams of refraction of a vehicle operated was to highlight the features and benefits. Bimodal tram station itself is the way the exclusive properties and to operate the route with large transport capacity has the characteristics of the railway, but the only routes such as railroad lines is not of closed roads under certain circumstances, the flexibility to use has to be integrated operations management system of bimodal trams characteristics of the railroads and public transportation by combining the characteristics of a flexible, convenient and secure services to users with the aim of providing research and will denote the system developed. In this study, bimodal integration system required for the operation of the tram station around the wired and wireless network management center, applying the organic integration into one system so that you have to be centrally managed. In addition, the existing traffic management system operates as a unidirectional rather than monitoring all system-wide management via the interactive network through real-time requests and responses were configured to allow management and control. These findings of the existing traffic operation management system that you can jump step can be based on future unmanned vehicles and related systems through control of the operation management system will be offered as a basis.

  • PDF

Day-to-day dynamics model based on consistent travel time perception behavior (운전자의 일관성 있는 통행시간 인지 행태에 기반한 일별 동적 모형)

  • Yang, In-Chul;Chung, Youn-Shik
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.195-202
    • /
    • 2011
  • This study develops a day-to-day dynamics modeling framework, incorporating a consistent drivers' travel time perception behavior and traffic information provision. Descriptive traffic information is updated and provided to the subscribers making a final decision on route choice. Nonsubscribers(not equipped any information devices) are assumed to obtain daily traffic information from their experience or friends or other public agencies. Drivers' route choice behavior is modeled based on boundedly-rational behavior rules. A microscopic traffic simulation model is adopted to evaluate the network system performance. Numerical experiments on a real world network have demonstrated the convergent property of the proposed model and the effectiveness of the consistent perception model.

LoRa Network based Parking Dispatching System : Queuing Theory and Q-learning Approach (LoRa 망 기반의 주차 지명 시스템 : 큐잉 이론과 큐러닝 접근)

  • Cho, Youngho;Seo, Yeong Geon;Jeong, Dae-Yul
    • Journal of Digital Contents Society
    • /
    • v.18 no.7
    • /
    • pp.1443-1450
    • /
    • 2017
  • The purpose of this study is to develop an intelligent parking dispatching system based on LoRa network technology. During the local festival, many tourists come into the festival site simultaneously after sunset. To handle the traffic jam and parking dispatching, many traffic management staffs are engaged in the main road to guide the cars to available parking lots. Nevertheless, the traffic problems are more serious at the peak time of festival. Such parking dispatching problems are complex and real-time traffic information dependent. We used Queuing theory to predict inbound traffics and to measure parking service performance. Q-learning algorithm is used to find fastest routes and dispatch the vehicles efficiently to the available parking lots.

Flexible, Extensible, and Efficient VANET Authentication

  • Studer, Ahren;Bai, Fan;Bellur, Bhargav;Perrig, Adrian
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.574-588
    • /
    • 2009
  • Although much research has been conducted in the area of authentication in wireless networks, vehicular ad-hoc networks (VANETs) pose unique challenges, such as real-time constraints, processing limitations, memory constraints, frequently changing senders, requirements for interoperability with existing standards, extensibility and flexibility for future requirements, etc. No currently proposed technique addresses all of the requirements for message and entity authentication in VANETs. After analyzing the requirements for viable VANET message authentication, we propose a modified version of TESLA, TESLA++, which provides the same computationally efficient broadcast authentication as TESLA with reduced memory requirements. To address the range of needs within VANETs we propose a new hybrid authentication mechanism, VANET authentication using signatures and TESLA++ (VAST), that combines the advantages of ECDSA signatures and TESLA++. Elliptic curve digital signature algorithm (ECDSA) signatures provide fast authentication and non-repudiation, but are computationally expensive. TESLA++ prevents memory and computation-based denial of service attacks. We analyze the security of our mechanism and simulate VAST in realistic highway conditions under varying network and vehicular traffic scenarios. Simulation results show that VAST outperforms either signatures or TESLA on its own. Even under heavy loads VAST is able to authenticate 100% of the received messages within 107ms. VANETs use certificates to achieve entity authentication (i.e., validate senders). To reduce certificate bandwidth usage, we use Hu et al.'s strategy of broadcasting certificates at fixed intervals, independent of the arrival of new entities. We propose a new certificate verification strategy that prevents denial of service attacks while requiring zero additional sender overhead. Our analysis shows that these solutions introduce a small delay, but still allow drivers in a worst case scenario over 3 seconds to respond to a dangerous situation.