• Title/Summary/Keyword: reactor modelling

Search Result 76, Processing Time 0.032 seconds

Multiscale Modeling and Simulation of Water Gas Shift Reactor (Water Gas Shift Reactor의 Multiscale 모델링 및 모사)

  • Lee, Ukjune;Kim, Kihyun;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.582-590
    • /
    • 2007
  • In view of the analysis of the phenomena and the prediction of the performance, mathematical modelling and simulation of a high temperature pilot reactor for water gas shift reaction (WGSR) has been carried out. Multiscale simulation incorporated computational fluid dynamics (CFD) technique, which has the capability to deal with the reactor shape, fluid and energy transport with extensive degree of accuracy, and process modeling technique, which, in turn is responsible for reaction kinetics and mass transport. This research employed multiscale simulation and the results were compared with those from process simulation. From multiscale simulation, the maximum conversion of was predicted approximately 0.85 and the maximum temperature at the reactor was calculated 720 K, resulting from the heat of reaction. Dynamic simulation was also performed for the time transient profile of temperature, conversion, etc. Considering the results, it is concluded that multiscale simulation is a safe and accurate technique to predict reactor behaviors, and consequently will be available for the design of commercial size chemical reactors as well as other commercial unit operations.

Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions

  • Magni, A.;Pizzocri, D.;Luzzi, L.;Lainet, M.;Michel, B.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2395-2407
    • /
    • 2022
  • The sodium-cooled fast reactor is among the innovative nuclear technologies selected in the framework of the development of Generation IV concepts, allowing the irradiation of uranium-plutonium mixed oxide fuels (MOX). A fundamental step for the safety assessment of MOX-fuelled pins for fast reactor applications is the evaluation, by means of fuel performance codes, of the integral thermal-mechanical behaviour under irradiation, involving the fission gas behaviour and release in the fuel-cladding gap. This work is dedicated to the performance analysis of an inner-core fuel pin representative of the ASTRID sodium-cooled concept design, selected as case study for the benchmark between the GERMINAL and TRANSURANUS fuel performance codes. The focus is on fission gas-related mechanisms and integral outcomes as predicted by means of the SCIANTIX module (allowing the physics-based treatment of inert gas behaviour and release) coupled to both fuel performance codes. The benchmark activity involves the application of both GERMINAL and TRANSURANUS in their "pre-INSPYRE" versions, i.e., adopting the state-of-the-art recommended correlations available in the codes, compared with the "post-INSPYRE" code results, obtained by implementing novel models for MOX fuel properties and phenomena (SCIANTIX included) developed in the framework of the INSPYRE H2020 Project. The SCIANTIX modelling includes the consideration of burst releases of the fission gas stored at the grain boundaries occurring during power transients of shutdown and start-up, whose effect on a fast reactor fuel concept is analysed. A clear need to further extend and validate the SCIANTIX module for application to fast reactor MOX emerges from this work; nevertheless, the GERMINAL-TRANSURANUS benchmark on the ASTRID case study highlights the achieved code capabilities for fast reactor conditions and paves the way towards the proper application of fuel performance codes to safety evaluations on Generation IV reactor concepts.

MODELLING THE DYNAMICS OF THE LEAD BISMUTH EUTECTIC EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM BY AN INFINITE IMPULSE RESPONSE LOCALLY RECURRENT NEURAL NETWORK

  • Zio, Enrico;Pedroni, Nicola;Broggi, Matteo;Golea, Lucia Roxana
    • Nuclear Engineering and Technology
    • /
    • v.41 no.10
    • /
    • pp.1293-1306
    • /
    • 2009
  • In this paper, an infinite impulse response locally recurrent neural network (IIR-LRNN) is employed for modelling the dynamics of the Lead Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS). The network is trained by recursive back-propagation (RBP) and its ability in estimating transients is tested under various conditions. The results demonstrate the robustness of the locally recurrent scheme in the reconstruction of complex nonlinear dynamic relationships.

CFD study of the PTS experiment in ROCOM test facility

  • Carija, Zoran;Ledic, Fran;Sikirica, Ante;Niceno, Bojan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2803-2811
    • /
    • 2020
  • With the aging of nuclear reactors, embrittlement of the reactor pressure vessel (RPV) steel, as a consequence of routine operations, is highly probable. To ensure operational integrity and safety, prediction and mitigation of compromising damage, brought on by pressurized thermal shock (PTS) following an emergency procedure, is of utmost importance. Computational fluid dynamics (CFD) codes can be employed to predict these events and have therefore been an acceptable method for such assessments. In this paper, CFD simulations of a density driven ECC state in the ROCOM facility are analyzed. Obtained numerical results are validated with the experimental measurements. Considerable attention is attributed to the boundary conditions and their influence, specifically outlet definitions, in order to determine and adequately replicate the non-active pumps in the facility. Consequent analyses focused on initial conditions as well as on the temporal discretization and inner iterations. Disparities due to different turbulent modelling approaches are investigated for standard RANS models. Based on observed trends for different cases, a definitive simulation setup has been established, results of which have been ultimately compared to the measurements.

Reliability Design of Output Module for Reactor Protection System Using Availability Analysis (가용도 분석을 이용한 원자로보호계통 제어기기 출력모듈의 신뢰도 설계)

  • Kim, Ji-Young;Park, Hong-Lae;Lyou, Joon;Lee, Dong-Young
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2545-2548
    • /
    • 2003
  • Reliability is the very important issue for nuclear fields. In this paper, an analysis method is suggested to evaluate the level of availability improvement by adding the fault diagnosis function in the control system of Reactor Protection System. The Failure Mode Effect Analysis(FMEA), MIL-HDBK-217F, and Makov modelling techniques are used for availability assessment.

  • PDF

Control Modelling and Controllability Evaluation of Liquid Zone Control System (액체영역제어계통의 제어모델링 및 제어성 평가)

  • Lee, Kwang-Dae;Yang, Seung-Ok;Oh, Eung-Se
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.641-643
    • /
    • 2004
  • Liquid Zone Control System controls the power of heavy water reactor. Changing the level of each zone compartment regulates one local zone power of 14 zone powers, iud the level is limited less than 90% by the control algorithm to prevent the flood. In recent years, the level and the power was controlled oscillatory in the upper zones. To find out the condition of cycling, the zone control system was modelled with the linear difference equations and identified using parameter estimation. The pole-zero plot showed that the major pole was near the stability boundary, and the system had oscillatory characteristics in nature.

  • PDF

Determination of Optimum Pressurizer Level for Kori Unit 1

  • Song, Dong-Soo;Lee, Chang-Sup;Lee, Jae-Yong;Kim, Yo-Han;Lee, Dong-Hyuk
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.437-442
    • /
    • 1997
  • To determine the optimum pressurizer water level during normal operation for Kori unit 1, performance and safety analysis are peformed. The methodology is developed by evaluating "decrease in secondary heat removal" events such as Loss of Normal Feedwater accident. To demonstrate optimum pressurizer level setpoint, RETRAN-03 code is used for performance analysis. Analysis results of RETRAN following reactor trip are compared with the actual plant data to justify RETRAN code modelling, The results of performance and safety analyses show that the newly established level setpoints not only improve the performance of pressurizer during transient including reactor trip but also meet the design bases of the pressurizer volume and pressure. pressure.

  • PDF

Structural Vibration of Cove Support Barrel Assembly for Yonggwang Nuclear Unit 4

  • Park, Suhn;Jung, Seung-Ho;Lee, Ki-Young
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.283-288
    • /
    • 1996
  • Core support barrel (CSB) assembly is one of the most important reactor internals structures supporting and protecting the nuclear core during normal operation and faulted events. For Yonggwang 3 and 4 (YGN 3&4), the adequacy of the analytical response prediction of reactor internals for flow induced vibration was demonstrated through the comprehensive vibration assessment program (CVAP) performed during hot functional test. Besides, the vibration characteristics of the CSB of operating nuclear power plant can be examined via the excore neutron noise monitoring signal. In this paper data from YGN 4 analyses, CVAP, and neutron noise monitoring system are compared and evaluated. In general, the results are comparable each other and conservative enough to ensure sufficient design margin and structural integrity. Further investigations on the modelling and analyses procedure are recommended to utilize the experimental results to the maximum extent. And collection of the neutron noise data is desired to serve as a baseline information.

  • PDF

Theoretical Model and Experimental Results of PECVD Amorphous Silicon Deposition Process (PECVD 비정질 실리콘 증착 반응의 이론적 모델과 실험결과)

  • 김진홍;남철우;김성일;김용태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.7
    • /
    • pp.1049-1058
    • /
    • 1990
  • Mathematical modeling equations of a parallel plate type reactor were obtained in the PECVD process in preparing hydrogenated amorphous silicon. Velocity profiles, temperature profiles and concentration profiles in the reactor were calculated from the model. The theoretical approach was attempted to obtain the deposition rate and film uniformity at different operating conditions by calculating RF discharge parameters and establishing the reaction mechanisms of a-Si:H thin film. The modelling equations are solved by a finite difference method with control volume balance. The mean electrom energy in discharge was applied to model simulation parameter. The magnitudes of the predicted deposition rate are in good aggrement with those of experiment. The results of computer simulation shows that uniform deposition profiles can.

  • PDF

MULTI-DIMENSIONAL APPROACHES IN SEVERE ACCIDENT MODELLING AND ANALYSES

  • Fichot, F.;Marchand, O.;Drai, P.;Chatelard, P.;Zabiego, M.;Fleurot, J.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.733-752
    • /
    • 2006
  • Severe accidents in PWRs are characterized by a continuously changing geometry of the core due to chemical reactions, melting and mechanical failure of the rods and other structures. These local variations of the porosity and other parameters lead to multi-dimensionnal flows and heat transfers. In this paper, a comprehensive set of multi-dimensionnal models describing heat transfers, thermal-hydraulics and melt relocation in a reactor vessel is presented. Those models are suitable for the core description during a severe accident transient. A series of applications at the reactor scale shows the benefits of using such models.