• Title/Summary/Keyword: reactor modelling

Search Result 76, Processing Time 0.023 seconds

Analysis of pulsed Plasma Reactor using Modelling Method (펄스플라즈마 반응기의 모델링에 의한 해석)

  • Choe, Yeong-Uk;Lee, Hong-Sik;Im, Geun-Hui;Kim, Tae-Hui;Baek, Min-Su;Jang, Gil-Hong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The pulsed plasma wire-plate reactor was analyzed on the basis of experiment, EMTP simulation and modelling method. Though the reactor has a non-linear impedance characteristics, we demonstrate that the reactor impedance can be approximately analyzed with the measured initial capacitance and average resistive component of flat zone. Using this modelling method, the influence of the reactor capacitance on the impedance matching between pulse generator and reactor can be investigated. From this, we found that the energy of 95% was delivered form pulse generator to reactor at the ratio of $C_r/C_p\cong 0.3,\; where\; C_p\; is\; pulse\; generator\; capacitance, C_r$ is reactor capacitance.

  • PDF

Modelling of RV Ledge Region for Dynamic Analysis of Coupled Reactor Vessel Internals and Core

  • Jhung, Myung J.
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.164-172
    • /
    • 1998
  • This paper presents the detailed modelling of reactor vessel ledge region for the dynamic analysis of the coupled internals and core model. The dynamic responses due to earthquake and pipe break are calculated using the input motions of reactor vessel taken from Ulchin nuclear power plant units 3 and 4. Two different representations for detailed and simplified models of the RV ledge region are made. The dynamic responses of the reactor internals components are compared between them. Response characteristics are reported and simplified model is suggested for earthquake and pipe break analysis for the future design of the reactor internals.

  • PDF

A modelling on Shunt Reactors in Railway Power Transmission System (철도고배 전송선로 분로리액터 설치에 대한 모델링)

  • Lee, Jongsoo;Lee, Jongwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1262-1268
    • /
    • 2015
  • I In power transmission systems, voltage changes continuously as reactive power is whether over supply or shortage. Reactive power produces in generators and consumes in transmission lines, and loads. Voltages at end points of transmission lines rise which is called Ferranti effect. Excessive voltage rising can reduce transmission equipment life, the voltage rising is usually permitted within the limit of 10%~30% excess. Shunt reactors are installed in transmission lines to put a curb on voltage rising. In this paper, we tried to do modelling for shunt reactor configuration types which are no grounding, grounded and grouded neutral reactor. Simulation are carried out for reactor magnitude for compensating transmission line capacitance.

Safety analysis of marine nuclear reactor in severe accident with dynamic fault trees based on cut sequence method

  • Fang Zhao ;Shuliang Zou ;Shoulong Xu ;Junlong Wang;Tao Xu;Dewen Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4560-4570
    • /
    • 2022
  • Dynamic fault tree (DFT) and its related research methods have received extensive attention in safety analysis and reliability engineering. DFT can perform reliability modelling for systems with sequential correlation, resource sharing, and cold and hot spare parts. A technical modelling method of DFT is proposed for modelling ship collision accidents and loss-of-coolant accidents (LOCAs). Qualitative and quantitative analyses of DFT were carried out using the cutting sequence (CS)/extended cutting sequence (ECS) method. The results show nine types of dynamic fault failure modes in ship collision accidents, describing the fault propagation process of a dynamic system and reflect the dynamic changes of the entire accident system. The probability of a ship collision accident is 2.378 × 10-9 by using CS. This failure mode cannot be expressed by a combination of basic events within the same event frame after an LOCA occurs in a marine nuclear reactor because the system contains warm spare parts. Therefore, the probability of losing reactor control was calculated as 8.125 × 10-6 using the ECS. Compared with CS, ECS is more efficient considering expression and processing capabilities, and has a significant advantage considering cost.

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

FUNCTIONAL MODELLING FOR FAULT DIAGNOSIS AND ITS APPLICATION FOR NPP

  • Lind, Morten;Zhang, Xinxin
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.753-772
    • /
    • 2014
  • The paper presents functional modelling and its application for diagnosis in nuclear power plants. Functional modelling is defined and its relevance for coping with the complexity of diagnosis in large scale systems like nuclear plants is explained. The diagnosis task is analyzed and it is demonstrated that the levels of abstraction in models for diagnosis must reflect plant knowledge about goals and functions which is represented in functional modelling. Multilevel flow modelling (MFM), which is a method for functional modelling, is introduced briefly and illustrated with a cooling system example. The use of MFM for reasoning about causes and consequences is explained in detail and demonstrated using the reasoning tool, the MFMSuite. MFM applications in nuclear power systems are described by two examples: a PWR; and an FBR reactor. The PWR example show how MFM can be used to model and reason about operating modes. The FBR example illustrates how the modelling development effort can be managed by proper strategies including decomposition and reuse.

Two-dimensional continuum modelling of an inductively coupled plasma reactor

  • Kim, Dong-Ho;Shung, Won-Young;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.128-133
    • /
    • 2000
  • Numerical analysis of the transport phenomena in an inductively coupled plasma reactor was conducted with two-dimensional axisymmetric model including the electromagnetic field model, electron and species density models. The spatial distribution of the charged species in the ion flux to the wafer have been calculated to examine the influence of the process conditions including antenna and reactor geometry. The antenna radius had a significant influence on the plasma state and axial ion flux distribution.

  • PDF

ANALYSIS OF THE FIXED BED REACTOR FOR DME SYNTHESIS

  • Song, Dae-Sung;Ahn, Sung-Joon;Cho, Won-Jun;Park, Dal-Keun;Yoon, En-Sup
    • 한국가스학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.27-32
    • /
    • 2007
  • Dimethyl Ether (DME, $CH_3OCH_3$) is the simplest ether and is considered as one of the leading candidates in the quest for a substitute fur petroleum-based fuels. In this work, we analyzed the one-step synthesis of DME in a shell and tube type fixed bed reactor and carried out a simulation with a one-dimensional, steady state model of a heterogeneous catalyst bed, while taking into consideration the heat and mass transfer between the catalyst pellets and reactants gas and the effectiveness factor of the catalysts, together with the reactor cooling through the reactor tube wall. The reactor simulation was carried out under steady state condition and we compared the simulation results with the experimental data obtained from operations of a pilot-scale reactor and found good agreement between them.

  • PDF

Modelling of Pulsed Plasma Reactor (펄스 플라즈마 반응기의 모델링)

  • Choi, Y.W.;Lee, H.S.;Rim, G.H.;Kim, T.H.;Joung, J.H.;Kim, J.W.;Jang, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2013-2015
    • /
    • 1999
  • The pulsed plasma wire-plate reactor was modelled on the basis of experiment and EMTP simulation. The electrical phenomena in reactor is consistent with the model we suggested. Using this model, the influence of the reactor capacitance on the impedance matching between pulse generator and reactor can be analyzed. From this, we found that the energy of 95 % was delivered from pulse generator to reactor at the ratio of $C_p$/$C_r$ $\cong$ 30 %, where $C_p$ is pulse generator capacitance, $C_r$ is reactor capacitance.

  • PDF

Development and testing of the hydrogen behavior tool for Falcon - HYPE

  • Piotr Konarski;Cedric Cozzo;Grigori Khvostov;Hakim Ferroukhi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.728-744
    • /
    • 2024
  • The presence of hydrogen absorbed by zirconium-based cladding materials during reactor operation can trigger degradation mechanisms and endanger the rod integrity. Ensuring the durability of the rods in extended time-frames like dry storage requires anticipating hydrogen behavior using numerical modeling. In this context, the present paper describes a hydrogen post-processing tool for Falcon - HYPE, a PSI's in-house tool able to calculate hydrogen uptake, transport, thermochemistry, reorientation of hydrides and hydrogen-related failure criteria. The tool extracts all necessary data from a Falcon output file; therefore, it can be considered loosely coupled to Falcon. HYPE has been successfully validated against experimental data and applied to reactor operation and interim storage scenarios to present its capabilities.