• Title/Summary/Keyword: reactor containment building(RCB)

Search Result 11, Processing Time 0.02 seconds

Analysis of Construction RCB Exterior Wall Formwork Placing High on Nuclear Power Plant (원자력 발전소 RCB 외벽 거푸집 1단 타설 높이별 시공성 분석)

  • Song, Hyo-Min;Shin, Yoon-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.205-206
    • /
    • 2014
  • It is very important to reduce the construction duration of the Reactor Containment Building (RCB) when considering the more than 50 months on average from concrete placement to completion. The purpose of this study attempts to evaluate the single-stage workability of the system given a change in the height of the setting of RCB exterior wall formwork to be used in nuclear power plant construction. As a result of this study, it is possible height of 3.5m~4m uses formwork when analyzing the construction period and material costs an increase in formwork by concrete lateral pressure, to ensure the workability of the RCB exterior wall formwork. Through this study, I want to provide as basic data for the improvement of workability and RCB shortening the construction period.

  • PDF

Optimal earthquake intensity measures for probabilistic seismic demand models of ARP1400 reactor containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Azad, Md Samdani;Tran, Viet-Linh;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4179-4188
    • /
    • 2021
  • This study identifies efficient earthquake intensity measures (IMs) for seismic performances and fragility evaluations of the reactor containment building (RCB) in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). The computational model of RCB is constructed using the beam-truss model (BTM) for nonlinear analyses. A total of 90 ground motion records and 20 different IMs are employed for numerical analyses. A series of nonlinear time-history analyses are performed to monitor maximum floor displacements and accelerations of RCB. Then, probabilistic seismic demand models of RCB are developed for each IM. Statistical parameters including coefficient of determination (R2), dispersion (i.e. standard deviation), practicality, and proficiency are calculated to recognize strongly correlated IMs with the seismic performance of the NPP structure. The numerical results show that the optimal IMs are spectral acceleration, spectral velocity, spectral displacement at the fundamental period, acceleration spectrum intensity, effective peak acceleration, peak ground acceleration, A95, and sustained maximum acceleration. Moreover, weakly related IMs to the seismic performance of RCB are peak ground displacement, root-mean-square of displacement, specific energy density, root-mean-square of velocity, peak ground velocity, Housner intensity, velocity spectrum intensity, and sustained maximum velocity. Finally, a set of fragility curves of RCB are developed for optimal IMs.

Seismic performance evaluation of reactor containment building considering effects of concrete material models and prestressing forces

  • Bidhek Thusa;Duy-Duan Nguyen;Md Samdani Azad;Tae-Hyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1567-1576
    • /
    • 2023
  • The reactor containment building (RCB) in nuclear power plants (NPPs) plays an important role in protecting the reactor systems from external loads as well as preventing radioactive leaking. As we witnessed the nuclear disaster at Fukushima Daiichi (Japan) in 2011, the earthquake is one of the major threats to NPPs. The purpose of this study is to evaluate effects of concrete material models and presstressing forces on the seismic performance evaluation of RCB in NPPs. A typical RCB designed in Korea is employed for a case study. Detailed three-dimensional nonlinear finite element models of RCB are developed in ANSYS. A series of pushover analyses are then performed to obtain the pushover curves of RCB. Different capacity curves are compared to recognize the influence of different material models on the nonlinear behavior of RCB. Additionally, the effects of prestressing forces on the seismic performances of the structure are also investigated. Moreover, a set of damage states corresponding to damage evolutions of the structures is proposed in this study.

Evaluation of Construction RCB Exterior Wall Formwork according to Placing Height on Nuclear Power Plant

  • Song, Hyo-Min;Sohn, Young-Jin;Shin, Yoonseok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.653-660
    • /
    • 2015
  • Technologies for reducing construction duration are key factors in nuclear power plant construction projects, as a reduction in construction duration at the construction phase leads to a reduction in construction cost and an increase in profits through the early operation of the nuclear power plant. To analyze the constructability of the height of single-layer placement of formwork for the Reactor Containment Building (RCB) exterior wall through lateral pressure according to the height of concrete placement, the deformation criteria for formwork, and a new form design, 'MIDAS GEN (hereinafter referred to as MIDAS)' is used in this study. The cost and workload of formwork are derived according to the unit of height of the RCB exterior wall. Based on the result, it was found that the higher the RCB exterior wall, the higher the material cost, and the less the construction duration and the less the total number of formwork layers. Based on this result, it is believed that the material cost and the construction duration can be appropriately determined according to the formwork height.

Analysis Model on Risk Factors of RCB Construction in Nuclear Power Plant (원자력 발전 플랜트 RCB 시공의 리스크 요인에 관한 분석 모델)

  • Shin, Dae-Woong;Shin, Yoonseok;Kim, Gwang-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.212-213
    • /
    • 2014
  • The purpose of this study is to suggest analysis model of RCB construction in nuclear power plant. For the objective, This study drew the risk factors of RCB construction from existing literature. The results of the study proposed analysis model made hierarchy in rebar, form, and concrete work. These will be baseline data for risk management in construction project of nuclear power plant.

  • PDF

Efficiency of various structural modeling schemes on evaluating seismic performance and fragility of APR1400 containment building

  • Nguyen, Duy-Duan;Thusa, Bidhek;Park, Hyosang;Azad, Md Samdani;Lee, Tae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2696-2707
    • /
    • 2021
  • The purpose of this study is to investigate the efficiency of various structural modeling schemes for evaluating seismic performances and fragility of the reactor containment building (RCB) structure in the advanced power reactor 1400 (APR1400) nuclear power plant (NPP). Four structural modeling schemes, i.e. lumped-mass stick model (LMSM), solid-based finite element model (Solid FEM), multi-layer shell model (MLSM), and beam-truss model (BTM), are developed to simulate the seismic behaviors of the containment structure. A full three-dimensional finite element model (full 3D FEM) is additionally constructed to verify the previous numerical models. A set of input ground motions with response spectra matching to the US NRC 1.60 design spectrum is generated to perform linear and nonlinear time-history analyses. Floor response spectra (FRS) and floor displacements are obtained at the different elevations of the structure since they are critical outputs for evaluating the seismic vulnerability of RCB and secondary components. The results show that the difference in seismic responses between linear and nonlinear analyses gets larger as an earthquake intensity increases. It is observed that the linear analysis underestimates floor displacements while it overestimates floor accelerations. Moreover, a systematic assessment of the capability and efficiency of each structural model is presented thoroughly. MLSM can be an alternative approach to a full 3D FEM, which is complicated in modeling and extremely time-consuming in dynamic analyses. Specifically, BTM is recommended as the optimal model for evaluating the nonlinear seismic performance of NPP structures. Thereafter, linear and nonlinear BTM are employed in a series of time-history analyses to develop fragility curves of RCB for different damage states. It is shown that the linear analysis underestimates the probability of damage of RCB at a given earthquake intensity when compared to the nonlinear analysis. The nonlinear analysis approach is highly suggested for assessing the vulnerability of NPP structures.

A Seismic Stability Design by the KEPIC Code of Main Pipe in Reactor Containment Building of a Nuclear Power Plant (원자력 발전소 RCB 내 중요배관의 KEPIC 코드에 의한 내진 안전성 설계)

  • Yi, Hyeong-Bok;Lee, Jin-Kyu;Kang, Tae-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.233-238
    • /
    • 2011
  • In piping design of nuclear power plant facilities, the load stress according to self-weight is important for design values in test run(shutdown and starting). But sometimes it needs more studies, such as seismic analysis of an earthquake of power plant area and fatigue life and stress of thermal expansion and anchor displacement in operating run. In this paper, seismic evaluations were performed to nuclear piping system of Shin-Kori NO. 3&4 being built in Pusan lately. Results of seismic analysis are evaluated on basis of KEPIC MN code. The structural integrity on RCB piping system was proved.

Evaluation of Nonlinear Seismic Response of RC Shear Wall in Nuclear Reactor Containment Building (원자로건물의 철근콘크리트 전단벽 비선형 지진응답 평가)

  • Kim, Dae Hee;Lee, Kyung Koo;Koo, Ji Mo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • Interest in the seismic performance of nuclear facilities under strong earthquakes has increased because their nonlinear response is important. In this paper, we proposed appropriate parameters for the nonlinear finite element analysis of a concrete material model, for a reinforced concrete (RC) shear wall in nuclear facilities: maximum tensile strength, dilation angle, and damage parameter. The study of the effects of the important parameters, on the nonlinear behavior and shear failure mode of the RC shear wall having low aspect ratio, was conducted using ABAQUS finite element analysis program. Based on the study results the nonlinear response of a nuclear reactor containment building (RCB) subjected to a strong earthquake was evaluated using nonlinear time-history analysis.

Development of RCB Exterior Wall Form for Duration Reduction (공사기간 단축을 위한 원자로 건물 외벽 거푸집 개발)

  • Cho, Yerim;Shin, Yoonseok;Ko, Young-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.587-595
    • /
    • 2018
  • Countries that have been banned from building nuclear plants are becoming more tolerant in response to global warming and climate change. Thus, the construction of future nuclear plants will increase, and the competition will also intensify. A nuclear power plant has a long construction period compared with conventional construction projects. In order to gain a competitive advantage in nuclear power plant construction, the construction period must be decreased. Therefore, the purpose of this study is to develop an exterior wall form for a reactor containment building to reduce the construction time by increasing the height of the form. The structural safety, constructability, and economic feasibility were analyzed to assess the applicability of the proposed form. The proposed form was determined to be structurally safe. Furthermore, the construction period was shortened by reducing the duration of the construction units, and the total construction cost and interest were also reduced. Therefore, the proposed form could contribute to reducing the construction period for nuclear power plants.

A study on transport and plugging of sodium aerosol in leak paths of concrete blocks

  • Sujatha Pavan Narayanam;Soubhadra Sen;Kalpana Kumari;Amit Kumar;Usha Pujala;V. Subramanian;S. Chandrasekharan;R. Preetha;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.132-140
    • /
    • 2024
  • In the event of a severe accident in Sodium Cooled Fast Reactors (SFR), the sodium combustion aerosols along with fission product aerosols would migrate to the environment through leak paths of the Reactor Containment Building (RCB) concrete wall under positive pressure. Understanding the characteristics of sodium aerosol transport through concrete leak paths is important as it governs the environmental source term. In this context, experiments are conducted to study the influence of various parameters like pressure, initial mass concentration, leak path diameter, humidity etc., on the transport and deposition of sodium aerosols in straight leak paths of concrete. The leak paths in concrete specimens are prepared by casting and the diameter of the leak path is measured using thermography technique. Aerosol transport experiments are conducted to measure the transported and plugged aerosol mass in the leak paths and corresponding plugging times. The values of differential pressure, aerosol concentration and relative humidity taken for the study are in the ranges 10-15 kPa, 0.65-3.04 g/m3 and 30-90% respectively. These observations are numerically simulated using 1-Dimensional transport equation. The simulated values are compared with the experimental results and reasonable agreement among them is observed. From the safety assessment view of reactor, the approach presented here is conservative as it is with straight leak paths.