• Title/Summary/Keyword: reactivity ratio

Search Result 250, Processing Time 0.024 seconds

Performance Test of $TiO_2$ Catalyst in VOCs Photocatalytic Degradation (VOCs 광촉매 분해용 $TiO_2$촉매제조 및 성능평가)

  • Lee Seung-Bum;Lee Jae-Dong;Park Yoon-Shin
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.45-50
    • /
    • 2005
  • Titania gel formations were prepared by sol-gel method using titanium(IV) chloride $(TiCl_4)$, and its characteristics were analyzed by varying the $epoxide/TiCl_4$ ratio and the amount of water In the end, titania $(TiO_2)$ aerogel were prepared using supercritical drying process. VOCs such as benzene, toluene, and m-xylene (BTX) were oxidized using prepared titania aerogel and commercially available $TiO_2$, and its performance was compared. The surface area, pore volume, and average pore diameter of 1,2-epoxybutane are significantly smaller than the propylene oxide. And the titania aerogels with 6 moi of epoxides have high surface areas, pore volumes, and average pore diameters. As a result of photo-oxidation, conversion of benzene was reached about $70\%$, and other reactants were reached about $60\%$ similarly. The conversion of BTX was increased as inlet concentration decreased. The reactivity of titania calcined at $600^{\circ}C$ was greater than $400^{\circ}C$ and $800^{\circ}C$. Water is required as a reactants for the oxidation of VOCs, and the continuous consumption of hydroxyl radicals required replenishments to maintain catalyst activity. The activity ratio increased with increasing reaction time when enough amount of water was present in the reactor.

Enzymatic Glycosylation of Fatty Acids by Methyl Glycosides (메틸글리코시드에 의한 지방산의 효소적 배당화)

  • SunWoo, Hwan;Kim, Chong-Tai;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.83-94
    • /
    • 1999
  • Glycoside fatty acid esters were synthesized by lipase-catalyzed glycosylation of fatty acids with methyl glycoside in solvent and solvent free process. Optimum condition of solvent process using 2-methyl-2-propanol were : moral ratio of methyl glycoside to fatty acid 1:3: initial concentration of methyl glycoside 50g/l:enzyme(immodilized lipase Novozym 435 from Candidia antarctica) content 1%(w/v) : desiccant content 9%(w/v); reaction temperature $60^{\circ}C$: reaction time 10hrs. The yield of 99% was obtained. Solvent-free process was carried out in total absence of solvent at $70^{\circ}C$ under reduced pressure, 5-20mmHg. To give meximum yield of 99% at the optimum condition of molar ratio of methyl glycoside to fatty acid 1:3, enzyme content 10%(w/w), and reaction time 10hrs. The glycosylation reactivity of different glycosylation agents were sequent to $Methyl-{\beta}-D-fructofuranoside$. $Methyl-{\beta}-D-glucopyranoside$. $Methyl-{\beta}-D-fructofuranosi$ de, and $Methyl-{\alpha}-D-glucopyranoside$.

Deep Desulfurization of Fuels by Heteropolyanion-Based Ionic Liquid

  • Li, Jinlei;Hu, Bing;Hu, Chuanqun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.225-230
    • /
    • 2013
  • A new heteropolyanion-based ionic ($[Hmim]_5PMo_{10}V_2O_{40}$) was synthesized by the reaction of molybdovanadophosphoric acid ($H_5PMo_{10}O_{40}$) with N-methylimidazole. [$[Hmim]_5PMo_{10}V_2O_{40}$ showed a high catalytic activity in the oxidative desulfurization of sulfur-containing compounds in 1-methylimidazolium tetrafluoroborate ($[Hmim]BF_4$) ionic liquid using 30% aqueous $H_2O_2$ as the oxidant. The catalytic system was of high activity, simplified workup and flexible recyclability. The catalytic oxidation reactivity of sulfur-containing compounds decreased in the order dibenzothiophene (DBT) > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT). The influences of various parameters including reaction time (t) and temperature (T), catalyst dosage, and oxidant to sulfur molar ratio n(O)/n(S) on the desulfurization of model oil were investigated in details. 99.1% of DBT conversion in the model oil was achieved at atmospheric pressure under the optimal conditions: n(O)/n(S) = 4:1, $60^{\circ}C$, 100 min and molar ratio of catalyst to sulfur of 0.062. The ionic liquid can be recycled six times without significant decrease in activity.

A Study on the Lift Flame Structure with Composition Ratios in Premixed Impinging Jet Flames of Syngas (H2/CO) (합성가스(H2/CO) 예혼합 충돌 제트화염에서 조성비에 따른 부상 화염구조에 관한 연구)

  • KIM, SEULGI;SIM, KEUNSEON;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.220-229
    • /
    • 2016
  • A numerical study on lifted flame structure in impinging jet geometry with syngas composition ratio was investigated. The numerical calculations including chemical kinetic analysis were conducted using SPIN application of the CHEMKIN Package with Davis-Mechanism. The flame temperature and velocity profiles were calculated at the steady state for one-dimensional stagnation flow geometry. Syngas mixture compositions were adjusted such as $H_2:CO=10:90(10P)$, 20 : 80 (20P), 30 : 70 (30P), 40 : 60 (40P), 50 : 50 (50P). As composition ratios are changed from 10P to 50P, the axial velocity and flame temperature increase because the contents of hydrogen that have faster burning velocity increase. This phenomenon is due to increase in good reactive radicals such as H, OH radical. As a result of active reactivity, the burning velocity is more faster and this is confirmed by numerical methods. Consequently, combustion reaction zone was moved to burner nozzle.

The Effects of Fine Particle Cement on the Quality of Fly Ash Concrete (플라이애시 사용 콘크리트의 품질에 미치는 미분시멘트의 영향)

  • Lee, Joung-Ah;Joeon, Kyu-Nam;Baek, Dae-Hyun;Park, Jong-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.113-117
    • /
    • 2009
  • Fly ash (called FA hereafter) that results from thermal power plants is a long-term strength improving substance with reactivity to pozzolan and has been used for long. However, large amount of FA shows many advantages such as reduction of hydratio energy, long-term improvement in strength and economic feasibility and also has difficulties from reduction in initial strength and durability. In a preceding study, fine particle cement was applied to test the effects on initial strength. Therefore in this study, the effects of fine particle cement on the quality of FA concrete were reviewed. The results can be summarized as follows. Liquidity was increased by the most at FC substitution ratio of 15%. Air capacity was reduced according to increasing substitution ratio of FA and FC. Compressive strength showed high strength expression at all ages when FC was substituted at 45%. Synthesizing the above results, appropriate mixing of FC in FA concrete can improve liquidity, reduce unit quantity and show improvement in strength. In particular, mixed use of FC seems effective in improving early quality of concrete.

  • PDF

Effects of Ball Milling on Sliding Wear Behavior of Ni-Al Intermetallics Coated on Mild Steel through Induction Heating Process (고주파 연소합성 코팅된 Ni-Al계 금속간화합물의 미끄럼 마모 특성에 미치는 볼 밀링의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.284-291
    • /
    • 2018
  • Ball-milling for reactant powders in advance and using an induction heating system for Ni-Al intermetallic coating process are known to enhance the reactivity of combustion synthesis. In this work, the effects of the charging weight ratio of ball to powder in ball-milling for reactant Ni-Al powders and the synthesizing temperature in induction heating on sliding wear behavior of the coating layers are investigated. Sliding wear behavior of the coating layers is examined against a tool steel using a pin-on-disc type sliding wear machine. As results, wear of the coating layer ball-milled without ball was severely worn out at the sliding speed of 2m/s, regardless of the synthesizing temperature in induction heating. However, the wear rate of the coating layers at the sliding speed was remarkably decreased with increasing the charging weight ratio of ball in ball-milling for reactant powders. This can be explained by the fact that the void in the coating layer is disappeared and the coating layer is densified by the ball-milling. The evidence showed that pitting damages were disappeared on the worn surface of ball-milled coating layer. Consequentially, the Ni-Al intermetallic coating layer could have better wear resistance at all sliding speed ranges with the ball-milling for reactant powders in advance.

Neutronic investigation of waste transmutation option without partitioning and transmutation in a fusion-fission hybrid system

  • Hong, Seong Hee;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1060-1067
    • /
    • 2018
  • A feasibility of reusing option of spent nuclear fuel in a fusion-fission hybrid system without partitioning was checked as an alternative option of pyro-processing with critical reactor system. Neutronic study was performed with MCNP 6.1 for this option, direct reuse of spent PWR fuel (DRUP). Various options with DRUP fuel were compared with the reference design concept; transmutation purpose blanket with (U-TRU)Zr fuel loading connected with pyro-processing. Performance parameters to be compared are transmutation performance of transuranic (TRU) nuclides, required fusion power and tritium breeding ratio (TBR). When blanket part is loaded only with DRUP, initial $k_{eff}$ level becomes too low to maintain a practical subcritical system, increasing the required fusion power. In this case, production rate of TRU nuclides exceeds the incineration rate. Design optimization is done for combining DRUP fuel with (U-TRU)Zr fuel. Reactivity swing is reduced to about 2447 pcm through fissile breeding compared to (U-TRU)Zr fuel option. Therefore, a required fusion power is reduced and tritium breeding performance is improved. However, transmutation performance with TRU nuclides especially $^{241}Am$ is degraded because of softening effect of spectrum. It is known that partitioning and transmutation should be accompanied with fusion-fission hybrid system for the effective transmutation of TRU.

Properties of Fresh Mortar Mixed with Steel Furnace Slag Powder (제강슬래그 분말을 혼입한 굳지 않은 모르타르의 특성)

  • Lee, Jeong-Taek;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.33-34
    • /
    • 2023
  • Currently, research on construction materials using industrial by-products is being conducted in the Inhan construction industry due to CO2 emissions during the cement production process and a shortage of aggregates. Among these, research has been conducted to use steel furnace slag as an aggregate by reducing the reactivity of free-CaO, which has the characteristic of expanding through open storage, aging, and rapid cooling. However, research on the use of powder as a cement admixture or substitute is insufficient. Therefore, this study aims to analyze the properties of fresh mortar using steel furnace slag powder. The mixing ratio of steel furnace slag powder was divided into three levels: 0, 20, and 40 (%), and the test items were flow and unit weight. The experimental results showed that as the mixing ratio of steel furnace slag powder increased, flow and unit weight tended to increase. Therefore, it is expected to have a positive effect on improving workability or strength as a cement admixture.

  • PDF

Numerical Study on the Effect of Diesel Injection Parameters on Combustion and Emission Characteristics in RCCI Engine (RCCI 엔진의 디젤 분사 파라미터에 따른 연소 및 배출가스 특성에 대한 수치적 연구)

  • Ham, Yun-Young;Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.75-82
    • /
    • 2021
  • Low-temperature combustion (LTC) strategies, such as HCCI (Homogeneous Charge Compression Ignition), PCCI (Premixed Charge Compression Ignition), and RCCI (Reactivity Controlled Compression Ignition), have been developed to effectively reduce NOx and PM while increasing the thermal efficiency of diesel engines. Through numerical analysis, this study examined the effects of the injection timing and two-stage injection ratio of diesel fuel, a highly reactive fuel, on the performance and exhaust gas of RCCI engines using gasoline as the low reactive fuel and diesel as the highly reactive fuel. In the case of two-stage injection, combustion slows down if the first injection timing is too advanced. The combustion temperature decreases, resulting in lower combustion performance and an increase in HC and CO. The injection timing of approximately -60°ATDC is considered the optimal injection timing considering the combustion performance, exhaust gas, and maximum pressure rise rate. When the second injection timing was changed during the two-stage injection, considering the combustion performance, exhaust gas, and the maximum pressure increase rate, it was judged to be optimal around -30°ATDC. In the case of two-stage injection, the optimal result was obtained when the first injection amount was set to approximately 60%. Finally, a two-stage injection rather than a single injection was considered more effective on the combustion performance and exhaust gas.

Effect of Process Parameters on Residual NCO and Viscosity of Pre-Polymers (Pre-Polymer의 제조에서 공정변수가 잔류 NCO 및 점도에 미치는 영향)

  • Kim, Sang-Oh;You, Man-Hee;Ha, Man-Kyung;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • For the production of urethane prepolymer, the effect of process parameters such as diisocyanate MDI and polyol TDI was tested. In this paper, design of experiments has been adopted for studying the effect of the process parameters on the improvement of NCO and viscosity of pre-polymer. As a result of comparison of different parameters, the effect of polyol was stronger than that of isocyanate in comparison of reactivity according to the amounts of isocyanate and polyol. Especially, NCO and viscosity of pre-polymer affected a product safety.

  • PDF