• Title/Summary/Keyword: reactivity ratio

Search Result 250, Processing Time 0.022 seconds

Characteristics of Hazardous Volatile Organic Compounds (HVOCs) at Roadside, Tunnel and Residential Area in Seoul, Korea (서울시 도로변, 터널 및 주거지역 대기 중 유해 휘발성 유기화합물의 특성)

  • Lee, Je-Seung;Choi, Yu-Ri;Kim, Hyun-Soo;Eo, Soo-Mi;Kim, Min-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.5
    • /
    • pp.558-568
    • /
    • 2011
  • Hazardous volatile organic compounds (HVOCs) have been increasingly getting concern in urban air chemistry due to photochemical smog as well as its toxicity or potential hazards. In this study, we investigated their concentrations and the properties in tunnel, urban roadside and residential area. As a result, among 36HVOCs measured in this study, BTEX (benzene, toluene, ethylbenzene, xylene) and dichlorodifluoromethane, 1,2,4-trimethylbenzene, trichlorofluoromethane were detected above the concentration of $1{\mu}g/m^3$ in every sampling site and the most abundant compound was toluene. The other compounds were detected at trace level or below the detection limit. In addition, we found that three CFCs (chlorofluorocarbons), such as CFC-12, CFC-11, CFC-113, were persistently detected because of the emission in the past. Toluene to benzene ratio (T/B) at tunnel and roadside were calculated to be 4.3~5.3 and at residential area 15.4, suggesting that the residential area had several emission sources other than car exhaust. The ratio of X/E (m,p-xylene to ethylbenzene) ratio was calculated to be 1.8~2.1 at tunnel, 1.7 at roadside and 1.2 at residential area, which means this ratio reflected well the relative photochemical reactivity between these compounds. Good correlation between m,p-xylene and ethylbenzene ($r^2$ > 0.85) were shown in every study sites. This indicated that correlation between $C_2$-alkylbenzenes were not severely affected by 3-way catalytic converter. In this study, it was demonstrated that the concentration of benzene was very low, compared with national air quality standard (annual average of $5{\mu}g/m^3$). Its concentration were $2.52{\mu}g/m^3$ in roadside and $1.34{\mu}g/m^3$ in residential area. We thought this was the result of persistent policy implementation including the reduction of benzene content in gasoline enforced on January 1, 2009.

Methyl Viologen Mediated Oxygen Reduction in Ethanol Solvent: the Electrocatalytic Reactivity of the Radical Cation

  • Lin, Qianqi;Li, Qian;Batchelor-McAuley, Christopher;Compton, Richard G.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.71-80
    • /
    • 2013
  • The study of methyl viologen ($MV^{2+}$) mediated oxygen reduction in electrolytic ethanol media possesses potential application in the electrochemical synthesis of hydrogen peroxide mainly due to the advantages of the much increased solubility of molecular oxygen ($O_2$) and high degree of reversibility of $MV^{2+/{\bullet}+}$ redox couple. The diffusion coefficients of both $MV^{2+}$ and $O_2$ were investigated via electrochemical techniques. For the first time, $MV^{2+}$ mediated $O_2$ reduction in electrolytic ethanol solution has been proved to be feasible on both boron-doped diamond and micro-carbon disc electrodes. The electrocatalytic response is demonstrated to be due to the radical cation, $MV^{{\bullet}+}$. The homogeneous electron transfer step is suggested to be the rate determining step with a rate constant of $(1{\pm}0.1){\times}10^5M^{-1}s^{-1}$. With the aid of a simulation program describing the EC' mechanism, by increasing the concentration ratio of $MV^{2+}$ to $O_2$ electrochemical catalysis can be switched from a partial to a 'total catalysis' regime.

Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Thiophenecarboxylates: Effect of ortho-Nitro Group on Reactivity and Mechanism

  • Seo, Jin-A;Chun, Sun-Mee;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1459-1463
    • /
    • 2008
  • Second-order rate constants (kN) have been measured spectrophotometrically for reactions of 3,4-dinitrophenyl 2-thiophenecarboxylate (2) with a series of alicyclic secondary amines in 80 mol % $H_2O$/20 mol % dimethyl sulfoxide at 25.0 ${^{\circ}C}$. The Brønsted-type plot exhibits a downward curvature for the aminolysis of 2. The curved Brønsted-type plot is similar to that reported for the corresponding reactions of 2,4-dinitrophenyl 2- thiophenecarboxylate (1). The reactions of 1 and 2 have been suggested to proceed through the same mechanism, i.e., through a zwitterionic tetrahedral intermediate ($T^{\pm}$) with a change in the rate-determining step. Substrate 2 is less reactive than 1 toward weakly basic amines (e.g., $pK_a$ < 10.4) but becomes more reactive as the basicity of amines increases further. Dissection of kN into the microscopic rate constants has revealed that the reaction of 2 results in a smaller $k_2/k_{-1}$ ratio but larger $k_1$ than the corresponding reaction of 1. Steric hindrance exerted by the ortho-nitro group has been suggested to be responsible for the smaller $k_1$ value found for the reactions of 1.

Experimental Characterization of Turning Process of Titanium Alloy Using Cryogenic Cooling and Nanofluid Minimum Quantity Lubrication (극저온 냉각 및 나노유체 극미량 윤활을 적용한 티타늄 합금의 선반 절삭가공 특성에 관한 연구)

  • Kim, Jin Woo;Kim, Jung Sub;Lee, Sang Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.3
    • /
    • pp.185-189
    • /
    • 2017
  • Recently, titanium alloys have been widely used in aerospace, biomedical engineering, and military industries due to their high strength to weight ratio and corrosion resistance. However, it is well known that titanium alloys are difficult-to-cut materials because of a poor machinability characteristic caused by low thermal conductivity, chemical reactivity with all tool materials at high temperature, and high hardness. To improve the machinability of titanium alloys, cryogenic cooling with LN2 (Liquid Nitrogen) and nanofluid MQL (Minimum Quantity Lubrication) technologies have been studied while turning a Ti-6Al-4V alloy. For the analysis of turning process characteristics, the cutting force, the coefficient of friction, and the surface roughness are measured and analyzed according to varying lubrication and cooling conditions. The experimental results show that combined cryogenic cooling and nanofluid MQL significantly reduces the cutting forces, coefficients of friction and surface roughness when compared to wet condition during the turning process of Ti-6Al-4V.

Synthesis and Photopolymerization of Photoreactive Mesogens Based on Chalcone

  • Nam, Sang-Woon;Kang, Suk-Hoon;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.74-81
    • /
    • 2007
  • A series of photoreactive mesogens based on chalcone were prepared and their morphological behavior and reactivity were studied according to a variable number of alkyloxy tail carbons. The linear ester compounds 3a-h comprised two chalcone units connected to a benzene ring through ester linkages. All linear ester compounds showed enantiotropic liquid crystalline phases. The X-ray diffractograms for the mesophases of compounds 3a-h showed a set of reflections in the small-angle region which consisted of more than three sharp diffraction peaks with d spacings in the ratio of 1:1/2:1/3, confirming the well defined smectic A structures of the compounds. Compounds 3a-h were considered to be bifunctional monomers due to the presence of two photoreactive chalcone groups. Upon UV irradiation, its polymerization proceeded through the [2+2] addition reaction between chalcone units in a stepwise manner. An image pattern was obtained by the photopolymerization of the liquid crystal of the compound (3h) with decyloxy tails through a photomask. The irradiated part became dark while the masked part remained birefringent under polarized optical microscopy, which was ascribed to the production via the UV irradiation of a polymer or a dimer having cyclobutane rings by [2+2] addition, which thereby disrupted the alignment of the molecules.

Preparation and Properties of Pelletized Activated Carbons Using Coconut Char and Coal-Tar Pitch

  • Yang, Seung-Chun;Lee, Young-Seak;Kim, Jun-Ho;Lim, Chul-Kyu;Park, Young-Tae
    • Carbon letters
    • /
    • v.2 no.3_4
    • /
    • pp.176-181
    • /
    • 2001
  • A series of activated carbons were prepared from coconut shells and coal-tar pitch binder by physical activation with steam in this study. The effect of variable processes such as activation temperature, activation time and ratio of mixing was investigated for optimizing those preparation parameters. The activation processes were carried out continuously. The nitrogen adsorption isotherms at 77 K on pellet-shaped activated carbons show the same trend of Type I by IUPAC classification. The average pore sizes were about 19-21${\AA}$. The specific surface areas ($S_{BET}$) of pellet typed ACs increased with increasing the activation temperature and time. Specific surface area of AC treated for 90 min at temperature $900^{\circ}C$ was 1082 $m^2/g$. The methylene blue numbers continuously increased with increasing the activation temperature and time. On the other hand, iodine numbers highly increased till activation time of 60 min, but the rate of increase of iodine numbers decreased after that time. This indicates that new micropores were created and the existing micropores turned into mesopores and macropores because of increased reactivity of carbon surface and $H_2O$.

  • PDF

The Characteristics of Solar Thermochemical Methane Reforming using Ferrite-based Metal Oxides (페라이트계 금속산화물을 이용한 태양 열화학 메탄 개질 특성)

  • Cha, Kwang-Seo;Lee, Dong-Hee;Jo, Won-Jun;Lee, Young-Seok;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.45-48
    • /
    • 2007
  • Thermochemical 2-step methane reforming, involving the reduction of metal oxide with methane to produce syn-gas and the oxidation of the reduced metal oxide with water to produce pure hydrogen, was investigated on ferrite-based metal oxide mediums and $WO_{3}/ZrO_{2}$. Thermochemical 2-step methane reforming were accomplished at 900 $^{\circ}C$(syn-gas production step) and 800 $^{\circ}C$(water-splitting step). In syn-gas production step, it appeared carbon deposition on metal oxides with increasing react ion time. Various mediums showed the different starting point of carbon deposition each other. To minimize the carbon deposition, the reaction time was controlled before the starting point of carbon deposition. As a result, $CO_{x}$ were not evolved in water-splitting step, Among the various metal oxides, $Mn-ferrite/ZrO_{2}$ showed high reactivity, proper $H_{2}/CO$ ratio, high selectivity of undesired $CO_{2}$ and high evolution of $H_{2}$.

  • PDF

Influence of Combustor Pressure on Combustion Characteristics and Local Flame Reaction in the Partially Premixed Flames with $CH_4$, $C_2H_4$ and $C_3H_8$ (부분 예혼합 화염의 연소실 압력이 연료별(메탄, 에틸렌, 프로판) 연소특성과 국소 화염 반응에 미치는 영향)

  • Kim, Jong-Ryul;Son, Je-Ha;Noh, Young-Gu;Kim, Yun-Dong;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.29-36
    • /
    • 2010
  • An experimental study was conducted for three different fuels($CH_4$, $C_2H_4$ and $C_3H_8$) to investigate the combustion characteristics and the local reaction intensity with combustor pressure(-30kpa~30kpa). Regardless of fuel composition, EINOx decreased with reducing pressure decreased. Structure and combustion characteristics were also largely affected by the combustor pressure. In addition, reaction intensity in terms of the changing combustor pressure and equivalence ratio was investigated. Combustion reaction in higher than atmospheric pressure was very active than the lower combustor pressure. When the combustor pressure is lower than the atmospheric pressure, the overall reactivity is noticeably enhanced due to the elevated diffusion process of unburned mixture. It was found that the combustion characteristics of the methane and propane flames are considerably influenced by the pressure while those of ethylene flame are less sensitive to the combustor pressure.

Combustion Characteristics of Blended Coals with Bituminous and Sub-bituminous in Oxy-fuel Combustion Conditions (순산소연소 조건에서 역청탄과 아역청탄 혼탄의 연소특성)

  • Sung, Yon-Mo;Moon, Cheor-Eon;Ahn, Seong-Yool;Kim, Seung-Il;Seo, Sang-Il;Kim, Tae-Hyung;Jeong, Ji-Hwan;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.22-29
    • /
    • 2011
  • This paper focuses on the combustion characteristics of blended coals with bituminous and sub-bituminous coals under air and oxy-fuel combustion conditions. The effects of oxygen concentration and blending ratio on the combustion characteristics were experimentally investigated using a thermogravimetric analyser (TGA). Characteristic temperatures including ignition, burnout temperature and activation energy were determined from TG and DTG combustion profiles. As oxygen concentration increased and the presence of sub-bituminous coal, characteristic temperatures and activation energy decreased. The ignitability, reactivity and kinetics have all been greatly improved under oxy-fuel combustion conditions. Based on this, co-firing with bituminous and sub-bituminous coals under oxy-fuel combustion conditions may be suggested as an alternative method to the fuel flexibility and cost-effective power production with carbon capture and sequestration.

Solvent-free, Soap-free Synthesis Process of Methyl Fructoside Oleic Acid Polyester (무용매 , 무유화제 공정에 의한 메틸프룩토시드 올레산 폴리에스테르의 합성)

  • Heo, Joo-Hyung;Kim, Chong-Tai;Kim, Hae-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.45-56
    • /
    • 1998
  • Methyl fructoside oleic acid polyester(MFPE), fructose-based sugar polyester, was synthesized by solvent-free, soap-free transesterification of methyl oleate with methyl fructoside(MF) as a sugar starting material in the presence of conventional potassium carbonate basic catalyst. Methyl fructoside was found to be an effective sugar starting material, because of its low softning point, high heat stability, high miscibility, and high reactivity than other sugars. Yield 98% of purified MFPE based on initial weight of MF was obtained at 1:5 of the molar ratio of methyl fructoside to methyl oleate, 2%(w/w) of potassium carbonate catalyst content, 20${\sim}$200mmHg of reduced pressure and $180^{\circ}C$ of reaction temperature. MFPE structure was confirmed by infrared and proton nuclear magnetic resonance spectroscopy. Physical properties of methyl of fructoside oleic acid polyester such as viscosity, HLB, solubility, color, refractive index, specific gravity, and density were similar to physical properties of sucrose polyesters(SPE) and vegetable oils. Then, it was elucidated that MFPE was sufficient to replace the SPE and conventional oils.