• Title/Summary/Keyword: reactive radicals

Search Result 357, Processing Time 0.026 seconds

Comparison of Antioxidant, Cytotoxicity and Flavonoid Content of Stachys sieboldii Miq. vs. Lycopus lucidus Turcz. Leaf Extracts (초석잠 및 택란 잎 추출물의 항산화 및 세포독성 활성과 총 플라보노이드 함량 비교)

  • Na, Eun;Lee, Jung Woo;Lim, Sun Young
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.147-155
    • /
    • 2020
  • In this study, the antioxidant and cytotoxic effects and the flavonoid contents of leaf extracts from Stachys sieboldii Miq. and Lycopus lucidus Turcz. were compared. The flavonoid contents of the acetone + methylene chloride (A+M) and methanol (MeOH) extracts of L. lucidus Turcz. leaves were 55.7 and 233.2 mg/g, respectively. In a DPPH assay, A+M and MeOH extracts from L. lucidus Turcz leaves had a greater scavenging effect than those of S. sieboldii Miq. leaves (p<0.05). In an ABTS assay, MeOH extracts from S. sieboldii Miq. and L. lucidus Turcz (0.5 mg/ml concentration) leaves had scavenging effects of 85% and 91%, respectively (p<0.05), suggesting that both of the MeOH extracts had greater scavenging effects than both A+M extracts. In a 120 min ROS production assay, all tested extracts decreased the cellular ROS production induced by H2O2 compared to that produced by exposure to the extract-free control. The MeOH extract from L. lucidus Turcz leaves had a greater inhibitory effect on cellular ROS production (p<0.05). Treatment with A+M and MeOH extracts from both S. sieboldii Miq. and L. lucidus Turcz. leaves showed a dose-dependent increased cytotoxicity against the growth of AGS, HT-29 cancer cells, and HT-1080 (p<0.05). Both A+M extracts had a greater inhibitory effect on the growth of all cancer cells than both MeOH extracts. These results suggest that the MeOH extract of L. lucidus Turcz. leaves is effective in scavenging free radicals and inhibiting cellular oxidation, while the A+M extract inhibits proliferation of three types of cancer cell.

Effects of vitamin C as antioxidant on recovery of left ventricular function after ischemia and reperfusion in isolated rat heart (항산화제로서 비타민 C가 적출된 쥐심장에서 허혈 및 재관류후 좌심실 기능회복에 미치는 영향)

  • 류한영;이철주
    • Journal of Chest Surgery
    • /
    • v.29 no.6
    • /
    • pp.593-598
    • /
    • 1996
  • The large number of past investigation on extended myocardial protection clearly indicates that cold potassium cardioplegia and topical cooling have limited capabilities. Accordingly, more recent experimen- tal approaches have focused on the modalities of reperfusion and their implication on postischemic myo- cardial recovery. Oxygen may play a crucial role in the development of ischemic and reperfusion injury. Reactive oxygen radicals may be produced during ischemia or reperfusion after incomplete reduction of molecular oxygen or from other pathway and then induce fatal injury of the heart. The important obser- vation of oxygen-induced myocardial damage during reperfusion has led to the concept of applying oxy- gen free radical scavengers. So, this study is on dietary vitamin C supplementation as antioxidant in rats to determine whether or not they have a higher tolerance against cardiac ischemia-reperf'usion injury under Langendorff system. Male or female Sprague-Dawley rats (190-33Og) were randomly separated into two groups. Group A was not treated(n=10). Group B received vitamin C supplement (n=10). Experiment was performed 24 hours after vitamin C 200mg fed orally as injectable ascorbic acid. There were significant differences in contractile parameters between control and vitamin C-treated group. The RLVP (r te of post/preischemic left ventricular pressure) and Rdp/dt (rate of post/preischemic dp/dt) were significant statistically between two groups (p<0.05). But, RHR (rate of post/preischemic heart rate), time to first beat and sta'utilization were not significant. In conclusion, pretreatment with the antioxidant, ascorbic acid, was found to preserve left ventricular contractile function. But the precise mechanism of action of ascorbic acid has not as yet been determined, so further study will be required.

  • PDF

Effect of Iron Excess-induced Oxidative Stress on Platelet Aggregation (과잉 철로 유도된 산화적 스트레스가 혈소판 활성화에 미치는 작용)

  • Seo, Geun-Young;Park, Hyo-Jin;Jang, Sung-Geun;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.979-984
    • /
    • 2006
  • Although iron is essential for many physiological processes, excess iron can lead to tissue damage by promoting the generation of reactive oxygen species (ROS). There is increasing evidence that ROS might play an important role in the pathogenesis of cardiovascular disease. However, the effects of iron excess on platelet function and the thrombotic response to vascular injury are not well understood. We examined the effects of iron excess-induced oxidative stress and the antioxidants on platelet aggregation. Oxidative stress was accessed by either free iron $(Fe^{+2})$ or hydrogen peroxide $(H_2O_2)$, as well as their combination on washed rabbit platelets (WPs) in vitro. When WPs were stimulated with either $Fe^{+2}$ alone or a subthreshold concentration of collagen, which gave an aggregatory curve with a little effect, and a dose dependent increase in platelet aggregation was observed by increasing concentrations of $Fe^{+2}$ with $H_2O_2$. This aggregation was associated with the iron-catalyzed formation of hydroxyl radicals from $H_2O_2$, and were inhibited by NAD/NADP (proton acceptor), catalase $(H_2O_2\;scavenger)$, tiron (iron chelator), mannitol (hydroxyl radical scavenger), and indomethacin (cyclooxygenase inhibitor), but not by NADH/NADPH (proton donor), superoxide mutase, and aspirin. However, NADH/NADPH, an essential cofactor for the antioxidant capacity by the supply of reducing potentials, showed the effect of an enhanced radical formation, suggesting a role for NADH/NADPH-dependent oxidase. These results suggest that iron $(Fe^{+2})$ can directly interact with washed rabbit platelets and this aggregation be mediated by OH formation as in the Fenton reaction, inhibited by radical scavengers.

Antioxidative Activities of Temperature-stepwise Water Extracts from Inonotus obliquus (차가버섯의 온도단계별 물추출물의 항산화성 비교)

  • Lee, Sang-Ok;Kim, Min-Jeong;Kim, Dong-Gyun;Choi, Hyun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.2
    • /
    • pp.139-147
    • /
    • 2005
  • The efficacy of extraction from Inonotus obliquus was examined from the points of antioxidative characteristics and some antioxidative compounds. To enhance the efficient extraction for the effective components from Inonotus obliquus, temperature-stepwise water extraction method was applied. Temperature-stepwise water extracts were prepared for 8 hrs as follows: the first extract at 8$0^{\circ}C$, the second extract from the residue of the first extract at 10$0^{\circ}C$, and the third extract from the residue of the second extract at 12$0^{\circ}C$. Antioxidativeactivities were determined by electron-donating ability of DPPR - free radical, scavenging ability of ABTS$.$$^{+}$radical cation, and by inhibiting ability of linoleic acid autoxidation. In results, the first extract showed the least antioxidant capacity, and the third extract showed the highest antioxidant capacity. The third extract also had the greatest amounts of phenolic compounds and flavonoids. Amounts of phenolic compound from each extract were almost proportional to the radical scavenging activities and linoleic acid autoxidation inhibiting ability (r=0.960∼0.980, regression analysis). Furthermore, the effect of the pooled extract of all three extractions of Inonotus obliquus on the lipid peroxidation reacted with active oxygen species (KO$_2$, $H_2O$$_2$, $.$OH) and metals (Fe$^{2+}$, CU$^{2+}$) was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). The pooled Inonotus obliquus extracts lowered the amounts of TBARS formed by all of the active oxygen species and metals. Especially, these lowering effects were pronounced in the reaction with $.$OH and Fe$^{2+}$. These results suggest that the pooled temperature-stepwise extract from Inonotus obliquus could be potential functional materials to reduce the oxidation of lipids and other compounds induced by free radicals.adicals.

Photoprotection and Anti-inflammatory Effects of Chinese Medical Plants (약용식물추출물의 광보호 효과와 항염증 효과 연구)

  • Jin-Hwa, Kim;Sung-Min, Park;Gwan-Sub, Sim;Bum-Chun , Lee;Hyeong-Bae, Pyo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.227-233
    • /
    • 2004
  • Chronic exposure to solar radiation, particularly ultraviolet (UV) light, causes a variety of adverse reactions on human skin, such as sunburn, photoaging and photocarcinogenesis. Free radicals and reactive oxygen species (ROS) caused by UV exposure or other environmental facts play critical roles in cellular damage. And, repeated-UV irradiation activated the expression of the matrix metalloproteinase (MMP) and induced skin irritation. Therefore, the development of effective and safe photoprotectants that can reduce and improve the skin damage has been required. The purpose of this study was to investigate the photo-protective effect of several chinese medical plants (Juniperus chinensis) on the UV -induced skin cell damages. We tested free radical and superoxide scavenging effect in vitro. Fluorometric assays of the proteolytic activities of MMP-1 (collagenase) were performed using fluorescent collagen substrates. UVA induced MMP-1 synthesis and activity were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in skin fibroblasts. We also examined anti-inflammatory effects by the determination test of proinflammatory cytokine, interleukin 6 in HaCaT keratinocytes. Expression of prostaglandin E$_2$ (PGE$_2$) after UVB irradiation was measured by competitive enzyme immunoassay(EIA) using PGE$_2$ monoclonal antibody. In the human skin we tested anti-irritation effect on the SLS-induced damage skin after appling the extract containing emulsion. We found that Juniperus chinensis extract had potent radical scavenging effect by 98% at 100$\mu\textrm{g}$/mL. The extract of Juniperus chinensis showed strong inhibitory effect on MMP-1 activities by 97% at 100 $\mu\textrm{g}$/mL and suppressed the UVA induced expression of MMP-1 by 79% at 25$\mu\textrm{g}$/mL. This extract also showed strong inhibition on MMP-2 activity in UVA irradiated fibroblast by zymography. In the test of proinflammatory cytokines of human keratinocytes Juniperus chinensis extract decreased expression of interleukin 6 about 30%. The amount of PGE$_2$ by HaCaT keratinocytes was significantly increased at the doses of above 10 mJ/$\textrm{cm}^2$ of UVB (p < 0.05). At the concentrations of 3.2-25$\mu\textrm{g}$/mL of this extract, the production of PGE$_2$ by HaCaT keratinocytes (24 h after 10mJ/$\textrm{cm}^2$ UVB irradiation) was significantly inhibited in culture supernatants (p < 0.05). In SLS-induced skin irritation model in vivo, we found to reduce skin erythema and improve barrier recovery after appling Juniperus chinensis extract containing emulsion when compared to irritated non-treated and placebo-treated skin. Our results suggest that Juniperus chinensis extract can be effectively used for the prevention of UV and SLS-induced adverse skin reactions and applied as anti-aging and anti-irritation cosmetics.

Development of Natural Antioxidants and Whitening Agents for Cosmeceuticals

  • Kim, Jong-Pyung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.11a
    • /
    • pp.79-92
    • /
    • 2007
  • Oxidative stress have known to be a risk factor for the degenerative processes and closely related to a lot of diseases. It is well established that antioxidants are good in protection and therapeutic means against oxidative damage. There is increasing interest in natural antioxidants and many natural antioxidants have been found and utilized as the possible protection for various diseases and skin aging. We have screened natural antioxidant agents for cosmeceuticals, nutraceuticals, and drugs as therapeutic and preventive means against oxidative stress, and have developed a number of novel antioxidants from various natural sources. A novel melanin synthesis inhibitor, Melanocin A, isolated from the metabolite of a fungal strain Eupenicillium shearii F80695 inhibited mushroom tyrosinase and melanin biosynthesis of B16 melanoma cells with $IC_{50}$ value of 9.0 nM and MIC value of $0.9\;{\mu}M$, respectively. Melanocin A also exhibited potent antioxidant activity by scavenging of DPPH and superoxide anion radicals. UV was found to increase the level of hydrogen peroxides and other reactive oxygen species (ROS) in skin tissues. This increase in ROS may not only alter the structure and function of many genes and proteins directly but may also modulate their expressions through signal transduction pathways and, ultimately, lead to skin damage. We investigated the effect of Melanocin A on UV-induced premature skin aging. Firstly, the effect of Melanocin A on UV-induced matrix metalloproteinase (MMP)-9 expression in an immortalized human keratinocyte cell line, HaCaT in vitro was investigated. Acute UV irradiation induced MMP-9 expression at both the mRNA and protein levels and Melanocin A suppressed this expression in a dose-dependent manner. We then investigated UV-induced skin changes in hairless mice in vivo by Melanocin A. Chronic exposure of hairless mouse dorsal skin to UV increased skin thickness and induced wrinkle formation and the gelatinase activities of MMP-2 and MMP-9. Moreover, Melanocin A significantly suppressed UV-induced morphologic skin changes and MMP-2 and MMP-9 expression. These results show that Melanocin A can prevent the harmful effects of UV that lead to skin aging. Therefore, we suggest that Melanocin A should be viewed as a potential therapeutic agent for preventing and/or treating premature skin aging. Terrein is a bioactive fungal metabolite isolated from Penicillium species. Terrein has a relatively simple structure and can be easily synthesized. However, the biologic effects of terrein are comparatively unknown. We found for the first time that terrein potently inhibit melanin production in melanocytes and has a strong hypopigmentary effect in a spontaneously immortalized mouse melanocyte cell line, Mel-Ab. Treatment of Mel-Ab cells with terrein (10-100 mM) for 4 days significantly reduced melanin levels in a dose-dependent manner. In addition, terrein at the same concentration also reduced tyrosinase activity. We then investigated whether terrein influences the extracellular signal-regulated protein kinase (ERK) pathway and the expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. Terrein was found to induce sustained ERK activation and MITF down-regulation, and luciferase assays showed that terrein inhibits MITF promoter activity in a dose-dependent manner. To elucidate the correlation between ERK pathway activation and a decreased MITF transcriptional level, PD98059, a specific inhibitor of the ERK pathway, was applied before terrain treatment and found to abrogate the terrein-induced MITF attenuation. Terrein also reduced the tyrosinase protein level for at least 72 h. These results suggest that terrain reduces melanin synthesis by reducing tyrosinase production via ERK activation, and that this is followed by MITF down-regulation.

  • PDF

The Effect of Nitric Oxide Donor or Nitric Oxide Synthase Inhibitor on Oxidant Injury to Cultured Rat Lung Microvascular Endothelial Cells (산화질소 공여물과 산화질소 합성효소 길항제가 백서 폐미세혈관 내피세포 산화제 손상에 미치는 영향)

  • Chang, Joon;Michael, John R.;Kim, Se-Kyu;Kim, Sung-Kyu;Lee, Won-Young;Kang, Kyung-Ho;Yoo, Se-Hwa;Chae, Yang-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1265-1276
    • /
    • 1998
  • Background : Nitric oxide(NO) is an endogenously produced free radical that plays an important role in regulating vascular tone, inhibition of platelet aggregation and white blood cell adhesion to endothelial cells, and host defense against infection. The highly reactive nature of NO with oxygen radicals suggests that it may either promote or reduce oxidant-induced cell injury in several biological pathways. Oxidant injury and interactions between pulmonary vascular endothelium and leukocytes are important in the pathogenesis of acute lung injury, including acute respiratory distress syndrome(ARDS). In ARDS, therapeutic administration of NO is a clinical condition providing exogenous NO in oxidant-induced endothelial injury. The role of exogenous NO from NO donor or the suppression of endogenous NO production was evaluated in oxidant-induced endothelial injury. Method : The oxidant injury in cultured rat lung microvascular endothelial cells(RLMVC) was induced by hydrogen peroxide generated from glucose oxidase(GO). Cell injury was evaluated by $^{51}$chromium($^{51}Cr$) release technique. NO donor, such as S-nitroso-N-acetylpenicillamine(SNAP) or sodium nitroprusside(SNP), was added to the endothelial cells as a source of exogenous NO. Endogenous production of NO was suppressed with N-monomethyl-L-arginine(L-NMMA) which is an NO synthase inhibitor. L-NMMA was also used in increased endogenous NO production induced by combined stimulation with interferon-$\gamma$(INF-$\gamma$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), and lipopolysaccharide(LPS). NO generation from NO donor or from the endothelial cells was evaluated by measuring nitrite concentration. Result : $^{51}Cr$ release was $8.7{\pm}0.5%$ in GO 5 mU/ml, $14.4{\pm}2.9%$ in GO 10 mU/ml, $32.3{\pm}2.9%$ in GO 15 mU/ml, $55.5{\pm}0.3%$ in GO 20 mU/ml and $67.8{\pm}0.9%$ in GO 30 mU/ml ; it was significantly increased in GO 15 mU/ml or higher concentrations when compared with $9.6{\pm}0.7%$ in control(p < 0.05; n=6). L-NMMA(0.5 mM) did not affect the $^{51}Cr$ release by GO. Nitrite concentration was increased to $3.9{\pm}0.3\;{\mu}M$ in culture media of RLMVC treated with INF-$\gamma$ (500 U/ml), TNF-$\alpha$(150 U/ml) and LPS($1\;{\mu}g/ml$) for 24 hours ; it was significantly suppressed by the addition of L-NMMA. The presence of L-NMMA did not affect $^{51}Cr$ release induced by GO in RLMVC pretreated with INF-$\gamma$, TNF-$\alpha$ and LPS. The increase of $^{51}Cr$ release with GO(20 mU/ml) was prevented completely by adding 100 ${\mu}M$ SNAP. But the add of SNP, potassium ferrocyanate or potassium ferricyanate did not protect the oxidant injury. Nitrite accumulation was $23{\pm}1.0\;{\mu}M$ from 100 ${\mu}M$ SNAP at 4 hours in phenol red free Hanks' balanced salt solution. But nitrite was not detectable from SNP upto 1 mM The presence of SNAP did not affect the time dependent generation of hydrogen peroxide by GO in phenol red free Hanks' balanced salt solution. Conclusion : Hydrogen peroxide generated by GO causes oxidant injury in RLMVC. Exogenous NO from NO donor prevents oxidant injury, and the protective effect may be related to the ability to release NO. These results suggest that the exogenous NO may be protective on oxidant injury to the endothelium.

  • PDF