Browse > Article
http://dx.doi.org/10.3746/jkfn.2005.34.2.139

Antioxidative Activities of Temperature-stepwise Water Extracts from Inonotus obliquus  

Lee, Sang-Ok ((주)네스코)
Kim, Min-Jeong ((주)네스코)
Kim, Dong-Gyun ((주)네스코)
Choi, Hyun-Ju (인제대학교 바이오헬스소재 연구센터)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.34, no.2, 2005 , pp. 139-147 More about this Journal
Abstract
The efficacy of extraction from Inonotus obliquus was examined from the points of antioxidative characteristics and some antioxidative compounds. To enhance the efficient extraction for the effective components from Inonotus obliquus, temperature-stepwise water extraction method was applied. Temperature-stepwise water extracts were prepared for 8 hrs as follows: the first extract at 8$0^{\circ}C$, the second extract from the residue of the first extract at 10$0^{\circ}C$, and the third extract from the residue of the second extract at 12$0^{\circ}C$. Antioxidativeactivities were determined by electron-donating ability of DPPR - free radical, scavenging ability of ABTS$.$$^{+}$radical cation, and by inhibiting ability of linoleic acid autoxidation. In results, the first extract showed the least antioxidant capacity, and the third extract showed the highest antioxidant capacity. The third extract also had the greatest amounts of phenolic compounds and flavonoids. Amounts of phenolic compound from each extract were almost proportional to the radical scavenging activities and linoleic acid autoxidation inhibiting ability (r=0.960∼0.980, regression analysis). Furthermore, the effect of the pooled extract of all three extractions of Inonotus obliquus on the lipid peroxidation reacted with active oxygen species (KO$_2$, $H_2O$$_2$, $.$OH) and metals (Fe$^{2+}$, CU$^{2+}$) was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). The pooled Inonotus obliquus extracts lowered the amounts of TBARS formed by all of the active oxygen species and metals. Especially, these lowering effects were pronounced in the reaction with $.$OH and Fe$^{2+}$. These results suggest that the pooled temperature-stepwise extract from Inonotus obliquus could be potential functional materials to reduce the oxidation of lipids and other compounds induced by free radicals.adicals.
Keywords
Inonotus obliquus; antioxidant; temperature-stepwise; DPPH; ABTS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yoshhiko O. 1989. SOD and active oxygen modulators. NIHON-IGAKUKAN, Tokyo. p 129-278
2 Lee SE. 2001. Antioxidative chracteristics of Chamchwi (Aster scaber Thunb.) and identification of the active compounds. PhD Dissertation. Pusan National University. p 1-30
3 Halliwell B, Gutteridge JMC. 1984. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219: 1-14   DOI
4 Maeura Y, Weisburger JH, Williams G. 1984. Dose-dependent reduction of N-2-fluorenylacetamide-induced liver cancer and enhancement of bladder cancer in rats by butylated hydroxytoluene. Cancer Res 44: 1604-1610
5 Branen AS. 1975. Toxcology and biochemistry of butylated hydroxyanisole and butylatedihydroxytoluene. J Am Oil Chem Soc 1: 59-63
6 Jialal I, Grundyl S. 1992. Effects of dietary supplementation with alpha-tocopherol on the oxidative modification of low density lipoprotein. J Lipid Res 33: 899-906
7 Ichimura T, Watanave O, Maruyama S. 1998. Inhibition of HIV-1 protease by water-soluble lignin-like substance from an edible mushroom, Fuscoporia obliquq. Biosci Biotechnol Biochem 62: 575-577   DOI   ScienceOn
8 Saitoh A, Sato C, Niiyama K. 1996. チャガ カバノアナダケ の変異原性 抑制效果に ついて. 道衛硏究報 第46集
9 星崎 東明 1998. カバノアナダケ (チャガ). 健全社, オれンジ 文庫. p 38
10 Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1204
11 Kim JH, Park JH, Park SD, Choi SY, Seong JH, Moon KD. 2002. Preparation and antioxidant activity of health drink with extract powders from safflower (Carthamus tinctorius L.) seed. Korean J Food Sci Technol 34: 617-624
12 Osawa T. 1981. A novel type of antioxidant isolated from leaf was of Eucalypyus leaves. Agric Biol Chem 45: 735-739   DOI
13 Frenkel EN, Huang SW, Kanner J, German JB. 1994. Interfacial phenomena in the evaluation of antioxidants: bulk oils vs emulsion. J Agric Food Chem 42: 1054-1059   DOI   ScienceOn
14 Wang MF, Shao Y, Li JG, Zhu NQ, Rngarajan M, Lavoie EJ, Ho CT. 1998. Antioxidative phenolic compounds from sage (Salivia officinalis). J Agric Food Chem 46: 4869-4873   DOI   ScienceOn
15 Kang WW, Kim GY, Park PS, Park MR, Choi SW. 1996. Antioxidative properties of persimmon leaves. Food and Biotechnology 5: 48-53
16 Kahkonene MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja RK, Kujala TS, Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 47: 3954-3962   DOI   ScienceOn
17 Vinson JA, Hontz BA. 1984. Phenol antioxidative index: Comparative antioxidant effectiveness of red and white wines. J Agric Food Chem 43: 401-403
18 Kahlos K. 1994. XII. Inonotus obliquus (Chaga Fungus): In vitro culture and the production of inotodiol, sterols, and other secondary metabolites. Biotechnology in Agriculure and Forestry 26: 179-198   DOI
19 Shivrina AN. 1967. Chemical characteristics of compounds extracted from Inonotus obliquus. Chem Abstr 66: 17271z
20 Kier L. 1961. Triterpenes of Poria obliqua. J Pharm Sci 50: 471-474   DOI
21 Kahlos K, Hiltunen R. 1983. Identification of some lanostane type triterpenes from Inonotus obliquus. Acta Pharm Fenn 92: 220-224
22 Kahlos T, Zhuangas L, Hitunen R. 1987. Antitumor activity of some compounds and fractions from an n-hexene extract of Inonotus obliquus. Acta Pharm Fenn 96: 33-40
23 Leong LP, Shui G. 2002. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem 76: 69-75   DOI   ScienceOn
24 Mizno T, Zhuang C, Abe K, Okamoto H, Kito T, Ukai S, Leclerc S, Meijer L. 1999. Antitumor and hypoglycemic activities of polysaccharides from the sclerotia and mycelia of Inonotus obliquus. (Pers.:Fe.) PII (Aphyllophoromycetideae) Int J Med Mushrooms 1: 301-316   DOI
25 Kim SM, Cho YS, Kim EJ, Bae MJ, Han JP, Lee SH, Sung SK. 1998. Effect of hot water extracts of Salivamiltiorrhiza Bge., Prunus persica Stokes, Angelica gigas Nakai and Pinus strobus on lipid oxidation. J Korean Soc Food Sci Nutr 27: 399-405
26 Buege JA, Aust SD. 1978. Microsomal lipid peroxidation. Method Enzymol 52: 302-306   DOI
27 Choi Y, Him M, Shin J, Park J, Lee J. 2003. The antioxidant activities of the some commercial teas. J Korean Soc Foof Sci Nutr 32: 723-727   DOI   ScienceOn
28 Moreno MI, Isla MI, Sampietro AR, Vattuone MA. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 71: 109-114   DOI   ScienceOn
29 Cho SY, Han YB, Shin KH. 2001. Screening for antioxidant activity of edible plants. J Korean Soc Food Sci Nutr 30: 133-137
30 Miller NJ, Rice-Evans C, Davies MJ, Gopinathan V, Milner AA. 1993. A novel method for measuring antioxidant capacity and its applycation to monitoring the antioxisant status in premature neonates. Clin Sci 24: 407-412
31 Roberta RE, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237   DOI   ScienceOn
32 Banni S, Contini MS, Angioni E, Delana G, Dessi MA, Melis MP, Carta G, Corongiu FP. 1996. A novel approach to study linoleic acid autoxidation: importance of simultaneous detection of the substrate and its derivative oxidation products. Free Radical Research 25: 43-53   DOI   ScienceOn
33 Park YK, Koo MH, Ikegaki M, Contado JL. 1997. Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq Biol Technol 40: 97-106
34 Nakagawas T, Yokozawa T. 2002. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol 40: 1745-1750   DOI   ScienceOn
35 Kandaswami C, Middleton EJr. 1994. Free radical scavenging and antioxidant activity of plant flavonoids. In Free radicals in diagnostic medicine. Armstrong D, ed. Plenum Pree, New York and London. p 351-376
36 Ilo M, Moriyama Y, Matsumoto N, Takaki N, Fukumoto M. 1985. Inhibition of xanthine oxidase by flavonoids. Agric Biol Chem 49: 2173-2176   DOI