• Title/Summary/Keyword: reactive power control

Search Result 733, Processing Time 0.038 seconds

Versatile Shunt Hybrid Power Filter to Simultaneously Compensate Harmonic Currents and Reactive Power

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1311-1318
    • /
    • 2015
  • This paper introduces a novel topology and an effective control strategy for a shunt hybrid power filter (SHPF) to simultaneously compensate harmonic currents and reactive power. The proposed SHPF topology is composed of an LC passive filter tuned to the 7th harmonic frequency and a small-rated active filter connected in parallel with the inductor Lpf of the LC passive filter. Together with the SHPF topology, we also propose a control strategy, which consists of a proportional-integral (PI) controller for DC-link voltage regulation and a PI plus repetitive current controller, in order to compensate both the harmonic current and the reactive power without the need for additional hardware. Thanks to the effectiveness of the proposed control scheme, the supply current is sufficiently compensated to be sinusoidal and in-phase with the supply voltage, regardless of the distorted and phase lagging of the load current. The effectiveness of the proposed SHPF topology and control strategy is verified by simulated and experimental results.

Coordinated Control of Reactive Power between STATCOMs and Wind Farms for PCC Voltage Regulation

  • Nguyen, Thanh Hai;Lee, Dong-Choon;Van, Tan Luong;Kang, Jong-Ho
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.909-918
    • /
    • 2013
  • This paper proposes a coordinated control of the reactive power between the STATCOMs (static synchronous compensators) and the grid-side converters (GSC) of wind farms equipped with PMSGs (permanent-magnet synchronous generators), by which the voltage fluctuations at the PCC (point of common coupling) are mitigated in the steady state. In addition, the level of voltage sags is reduced during grid faults. To do this, the GSC and the STATCOM supply reactive power to the grid coordinately, where the GSCs are fully utilized to provide the reactive power for the grid prior to the STATCOM operation. For this, the GSC capability of delivering active and reactive power under variable wind speed conditions is analyzed in detail. In addition, the PCC voltage regulation of the power systems integrated with large wind farms are analyzed for short-term and long-term operations. With this coordinated control scheme, the low power capacity of STATCOMs can be used to achieve the low-voltage ride-through (LVRT) capability of the wind farms during grid faults. The effectiveness of the proposed strategy has been verified by PSCAD/EMTDC simulation results.

EMTP Simulation for the Dynamic Analysis of a STATCOM-Shunts-OLTC Coordination in Substation (변전소 조상 설비간의 협조 제어를 위한 EMTP 과도해석모형 개발)

  • Jeong, Ki-Seok;Baek, Young-Sik;Park, Ji-Ho;Chang, Byung-Hoon;Lee, Hyun-Chul;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.237_238
    • /
    • 2009
  • This paper proposes coordinative control method between STATCOM installed within substation and other reactive power resources including Shunt Reactors and Shunt Capacitors and OLTC. Voltage/Reactive power control has various difficult aspects to control because of analysis and system dynamics error. This coordinative control method suggests practical algorithm regarding system voltage and reactive power status which is easy to implement in substation basis. In normal status, STATCOM-Shunts-OLTC are in operation. The proposed algorithm is tested and verified in EMTP/RV. And this is expected to be applied to control multiple reactive power devices combined with SCADA/EMS system.

  • PDF

Distributed Adaptive Virtual Impedance Control to Eliminate Reactive Power Sharing Errors in Single-Phase Islanded Microgrids

  • Hoang, Tuan V.;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.120-121
    • /
    • 2017
  • This paper proposes an enhanced distributed generation (DG) unit with an adaptive virtual impedance control approach in order to address the inaccurate reactive power sharing problem. The proposed method can adaptively regulate the DG virtual impedance, and the effect of the mismatch in feeder impedances is compensated to share the reactive power accurately. The proposed control strategy is fully distributed and the need for the microgrid central controller is eliminated. Furthermore, the proposed method can be directly implemented without requirement of pre-knowledge of the feeder impedances. Simulations are performed to validate the effectiveness of the proposed control approach.

  • PDF

Virtual D-STATCOM Considering Distance (거리를 고려한 Virtual D-STATCOM)

  • Kim, Tae-Hun;Oh, Jeong-Sik;Park, Jang-Hyon;Park, Tae-Sik
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.151-158
    • /
    • 2019
  • In this paper, we construct a Virtual D-STATCOM using a number of grid-connected inverters installed in solar and wind power plants and compensate the reactive power of the cable depending on the reactive power of the load of the power distribution system and the distance to the power distribution line We propose a method to compensate the reactive power of the PCC stage near the substation without installing the existing single large capacity D-STATCOM. The proposed method is verified by Matlab Simulink simulation and its operation principle and reactive power compensation.

A New Direct Power Control Strategy for NPC Three-Level Voltage Source Rectifiers Using a Novel Vector Influence Table Method

  • Xia, Chang-Liang;Xu, Zhe;Zhao, Jia-Xin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.106-115
    • /
    • 2015
  • This paper proposes a novel direct power control (DPC) strategy for neutral-point-clamped (NPC) three-level rectifiers, to directly control the active power, the reactive power and the neutral point potential of the rectifiers by referring to three pre-calculated vector influence tables and minimizing an objective function. In the three vector influence tables, the influences of different voltage vectors on the active power, the reactive power and the neutral-point potential are shown explicitly. A conceptual description and control algorithm of the proposed controller are presented in this paper. Then, numerical simulations and experiments are carried out to validate the proposed method. Both the simulation and experimental results show that good performances during both the steady-state and transient operating conditions are achieved. As a result, the proposed strategy has been proven to be effective for NPC three-level rectifiers.

Reactive Current Assignment and Control for DFIG Based Wind Turbines during Grid Voltage Sag and Swell Conditions

  • Xu, Hailiang;Ma, Xiaojun;Sun, Dan
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.235-245
    • /
    • 2015
  • This paper proposes a reactive current assignment and control strategy for a doubly-fed induction generator (DFIG) based wind-turbine generation system under generic grid voltage sag or swell conditions. The system's active and reactive power constrains during grid faults are investigated with both the grid- and rotor-side convertors (GSC and RSC) maximum ampere limits considered. To meet the latest grid codes, especially the low- and high-voltage ride-through (LVRT and HVRT) requirements, an adaptive reactive current control scheme is investigated. In addition, a torque-oscillation suppression technique is designed to reduce the mechanism stress on turbine systems caused by intensive voltage variations. Simulation and experiment studies demonstrate the feasibility and effectiveness of the proposed control scheme to enhance the fault ride-through (FRT) capability of DFIG-based wind turbines during violent changes in grid voltage.

Power Quality Improvement using DVR (DVR을 이용한 전력품질 개선)

  • Kim, Seong-Hwan
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.462-466
    • /
    • 2021
  • DVR is a device that compensates for voltage fluctuations in distribution lines and is generally used in combination with a device that compensates reactive power and improve power factor. Such a coupling compensator has the disadvantage of being relatively difficult to control and bulky. In this paper, mathematical analysis of the maximum magnitude of the compensation voltage, phase angle, compensable reactive power and active power was performed in order to simultaneously compensate the reactive power and voltage fluctuation of the distribution line by applying the power angle control method of the DVR. A control algorithm for charging active power to the battery and supplying stored energy when the voltage is changed was developed and the results were confirmed through Matlab simulation.

Control Strategy for Accurate Reactive Power Sharing in Islanded Microgrids

  • Pham, Xuan Hoa Thi;Le, Toi Thanh
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1020-1033
    • /
    • 2019
  • This paper presents a control strategy to enhance the accuracy of reactive power sharing between paralleled three-phase inverters in an islanded microgrid. In this study, the mismatch of power sharing when the line impedances have significant differences between inverters connected to a microgrid has been solved, the accuracy of the reactive power sharing in an islanded microgrid is increased, the voltage droop slope is tuned to compensate for the mismatch of voltage drops across the line impedances by using an enhanced droop controller. The proposed method ensures accurate power sharing even if the microgrid has local loads at the output of the inverters. The control model has been simulated by MATLAB/Simulink with two or three inverters connected in parallel. Simulation results demonstrate the accuracy of the implemented control method. Furthermore, in order to validate the theoretical analysis and simulation results, an experimental setup was built in the laboratory. Results obtained from the experimental setup verify the effectiveness of the proposed method.

Improved Direct Power Control of Shunt Active Power Filter with Minimum Reactive Power Variation and Minimum Apparent Power Variation Approaches

  • Trivedi, Tapankumar;Jadeja, Rajendrasinh;Bhatt, Praghnesh
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1124-1136
    • /
    • 2017
  • Direct Power Control technique has become popular in the grid connected Voltage Source Converter (VSC) applications due to its simplicity, direct voltage vector selection and improved dynamic performance. In this paper, a direct method to determine the effect of voltage vector on the instantaneous active and reactive power variations is developed. An alternative Look Up Table is proposed which minimizes the commutations in the converter and results in minimum reactive power variation. The application of suggested table is established for Shunt Active Power Filter (SAPF) application. The Predictive Direct Power Control method, which minimizes apparent power variation, is further investigated to reduce commutations in converters. Both the methods are validated using 2 kVA laboratory prototype of Shunt Active Power Filters (SAPF).