• Title/Summary/Keyword: reactive oxygen species production

Search Result 947, Processing Time 0.03 seconds

Chemical Characteristics and Antioxidant Effects of Sea Mustard Undaria pinnatifida from the Gultongmeori Area, Taejongdae, Busan (부산 태종대 굴통머리 미역(Undaria pinnatifida)의 화학적 특성 및 항산화 효과)

  • Young Do Shin;Jung Woo Lee;Myungwon Choi;Sun Young Lim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.2
    • /
    • pp.196-203
    • /
    • 2023
  • We investigated the nutritional characteristics and antioxidant effects of sea mustard Undaria pinnatifida fractions from Gultongmeori in Taejongdae, Youngdo, Busan. Based on dry weight, the moisture, crude protein, crude lipid, crude ash, and crude fiber contents were 34.98%, 11.55%, 0.43%, 17.82%, and 3.45%, respectively. To evaluate the antioxidant effect, we used radical scavenging (DPPH and ABTS), reactive oxygen species (ROS) production measurement, and DNA oxidation assays. Total flavonoid and phenol contents were higher in the n-hexane fraction than in other fractions. The n-hexane fraction was more effective at scavenging free radicals than other fractions as assessed using DPPH and ABTS assays (P<0.05). The ROS production assay showed that all sea mustard fractions decreased H2O2 induced cellular ROS production compared to that seen in the control (P<0.05); however, the n-hexane fraction reduced cellular ROS production to a greater extent than the other fractions. Furthermore, the n-hexane fraction from Gultongmeori significantly inhibited genomic DNA oxidation. These results indicate that the antioxidant effect of sea mustard is associated with its high flavonoid and phenol content. This study proposes that processed food products supplemented with sea mustard can be developed as functional foods to promote health in the local population.

A Study of the Antioxidant and Anti-Inflammatory Effects of Dusokohwaeum

  • Yun-Gwon Seon;Jae Min Jeong;Jin-Sol Yoon;Joonyong Noh;Seung Kyu Im;Sung-Pil Bang;Jeong Cheol Shin;Jae-Hong Kim
    • Journal of Acupuncture Research
    • /
    • v.40 no.4
    • /
    • pp.356-367
    • /
    • 2023
  • Background: The aim of this study is to determine the antioxidant and anti-inflammatory effects of Dusokohwaeum (DOE). Methods: To measure the antioxidant and anti-inflammatory effects of DOE, the total flavonoid and polyphenol contents and radical scavenging activity were measured. Furthermore, reactive oxygen species (ROS), nitric oxide, and cytokine production were measured by treating lipopolysaccharide-induced RAW264.7 cells with DOE, and gene expression levels of inducible cyclooxygenase-2, nitric oxide synthase, and cytokines were evaluated. Results: Radical scavenging experiments revealed a significant concentration-dependent increase in scavenging capacity. The production of ROS, nitric oxide, and cytokines in the cells showed a significant concentration-dependent decrease when compared with the control group. The gene expression levels of inducible cyclooxygenase-2, nitric oxide synthase, and cytokines also showed a significant concentration-dependent decrease when compared with the control group. Conclusion: Interestingly, the antioxidant and anti-inflammatory effects of DOE were 23.42 ± 0.64 mg GAE/g and 20.83 ± 0.98 mg QE/g, respectively. The administration of DOE resulted in a concentration-dependent increase in scavenging ability in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability experiments. The production of intracellular ROS and nitric oxide was significantly reduced in the presence of DOE. The production of inflammatory cytokines (prostaglandin E2, tumor necrosis factor-alpha [TNF-α], interleukin-1 beta [IL-1β], and IL-6) was significantly reduced in the presence of DOE. Finally, the expression levels of inducible nitric oxide synthase, cyclooxygenase-2, TNF-α, IL-1β, and IL-6 were significantly decreased in the presence of DOE.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF

Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity

  • Yamauchi, Shota;Noguchi, Takuya;Ichijo, Hidenori
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • Apoptosis signal-regulating kinase 1 (ASK1), a mitogen- activated protein kinase kinase kinase, plays pivotal roles in stress responses. In addition, ASK1 has emerged as a key regulator of immune responses elicited by pathogen-associated molecular patterns (PAMPs) and endogenous danger signals. Recent studies have demonstrated that reactive oxygen species (ROS)-dependent activation of ASK1 is required for LPS-stimulated cytokine production as well as extracellular ATP-induced apoptosis in immune cells. The mechanism of ROS-dependent regulation of ASK1 activity by thioredoxin and TRAFs has been well characterized. In this review, we focus on the molecular details of the activation of ASK1 and its involvement in innate immunity.

Identification of the Antioxidative Function of Metallothionein by Oxidation of NADPH and Production of Nitrite (NADPH의 산화반응과 아질산 생성반응에 의한 Metallothionein 의 항산화적 기능 확인)

  • Kim Kwan-Chun;Kim Joon-Tae;Kim Hee-Joung
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.1 s.59
    • /
    • pp.52-57
    • /
    • 2006
  • Metallothioneins(MTs) belong to the class of low molecular weight proteins. Recently, it has been suggested that MTs may playa direct role in cellular defense against oxidative stress by functioning as antioxidants. Oxidative damage to different cellular components makes a major contribution to many pathogenenesses. Several studies have demonstrated that MT is able to quench a wide range of reactive oxygen species at a higher efficiency than other well known antioxidants such as superoxide dismutate(SOD). The present study was designed to evaluate the effect of MT on the activities of the reactive oxygen species removal system. MT showed the scavenging of superoxide in the SOD assay system in the presence or absence of SOD. When MT was added to nicotinamide adenine dinucleotide phosphate(NADPH) oxidation system in presence of fixed amount of SOD increase the breakdown rate of superoxide. When MT was added to the system that form nitrite from hydroxylammonium chloride, the formation of nitrite was inhibit. We concluded that the function of MT as antioxidant might have an effect on the level of superoxide scavenging.

Effects of Mitochondrial Reactive Oxygen Species on Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae-In;Park, A-Reum;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2012
  • Recent studies indicate that reactive oxygen species (ROS) are critically involved in persistent pain primarily through spinal mechanisms, and that mitochondria are the main source of ROS in the spinal dorsal horn. To investigate whether mitochondrial ROS can induce changes in membrane excitability on spinal substantia gelatonosa (SG) neurons, we examined the effects of mitochondrial electron transport complex (ETC) substrates and inhibitors on the membrane potential of SG neurons in spinal slices. Application of ETC inhibitors, rotenone or antimycin A, resulted in a slowly developing and slight membrane depolarization in SG neurons. Also, application of both malate, a complex I substrate, and succinate, a complex II substrate, caused reversible membrane depolarization and enhanced firing activity. Changes in membrane potential after malate exposure were more prominent than succinate exposure. When slices were pretreated with ROS scavengers such as phenyl-N-tert-buthylnitrone (PBN), catalase and 4- hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL), malate-induced depolarization was significantly decreased. Intracellular calcium above $100{\mu}M$ increased malateinduced depolarization, witch was suppressed by cyclosporin A, a mitochondrial permeability transition (MPT) inhibitor. These results suggest that enhanced production of spinal mitochondrial ROS can induce nociception through central sensitization.

Aldosterone Up-regulates Production of Plasminogen Activator Inhibitor-1 by Renal Mesangial Cells

  • Yuan, Jun;Jia, Ruhan;Bao, Yan
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.180-188
    • /
    • 2007
  • In vivo studies have demonstrated that aldosterone is an independent contributor to glomerulosclerosis. In the present study, we have investigated whether aldosterone itself mediated glomerulosclerosis, as angiotensin II (Ang II) did, by inducing cultured renal mesangial cells to produce plasminogen activator inhibitor-1 (PAI-1), and whether these effects were mediated by aldosterone-induced increase in transforming growth factor $\beta_1$ (TGF-$\beta_1$) expression and cellular reactive oxygen species (ROS) activity. Quiescent rat mesangial cells were treated by aldosterone alone or by combination of aldosterone and spironolactone, Ang II, neutralizing antibody to TGF-$\beta_1$ or antioxidant Nacetylcysteme (NAC). This study indicate that aldosterone can increase PAI-1 mRNA and protein expression by cultured mesangial cells alone, which is independent of aldosterone-induced increases in TGF-$\beta_1$ expression and cellular ROS. The effects on PAI-1, TGF-$\beta_1$ and ROS generation were markedly attenuated by spironolactone, a mineralocorticoid receptor antagonist, which demonstrate that mineralocorticoid receptor (MR) may play a role in mediating these effects of aldosterone.

Anti-Inflammatory, Anti-Angiogenic and Anti-Nociceptive Activities of 4-Hydroxybenzaldehyde

  • Lim, Eun-Ju;Kang, Hyun-Jung;Jung, Hyun-Joo;Kim, Kyung-Hoon;Lim, Chang-Jin;Park, Eun-Hee
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.231-236
    • /
    • 2008
  • The current work was designed to assess novel pharmacological activities of 4-hydroxybenzaldehyde (HD), a major phenolic constituent of various natural products of plant origin, such as Gastrodia elata Blume. HD exhibited a significant inhibition in the chick chorioallantoic membrane (CAM) angiogenesis. HD also displayed an inhibitory effect in acetic acid-induced permeability in mice. Anti-nociceptive activity of HD was convinced using the acetic acid-induced writhing test in mice. HD was able to suppress production of nitric oxide (NO) and induction of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-activated RAW264.7 macrophages. HD also diminished the reactive oxygen species (ROS) level elevated in the LPS-activated macrophages. In brief, HD exhibits anti-angiogenic, anti-inflammatory and anti-nociceptive activities possibly via down-regulating iNOS and/or COX-2, which may be partly responsible for pharmacological efficacies of various natural products.

Tributyltin Induces Apoptosis in R2C via Oxidative Stress and Caspase-3 Activation by Disturbance of $Ca^{2+}$

  • Lee, Kyung-Jin;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.303-307
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints toy ships is a wide-spread environmental pollutant. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying apoptosis induced by TBT in R2C cell. Effects of TBT on intracellular $Ca^{2+}$ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular $Ca^{2+}$ level in a time-dependent manner. The rise in intracellular $Ca^{2+}$ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular $Ca^{2+}$ chelator, indicating the important role of $Ca^{2+}$ in R2C during these early intracellular events. In addition, Z-DEVD FMB, a caspase -3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular $Ca^{2+}$ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases, and finally results in DNA fragmentation.

$\alpha$-Phenyl-N-t-butylnitrone Protects Oxidative Damage to HepG2 Cells

  • Kim, Sun-Yee;Kim, Ryung-Hyo;Huh, Tae-Lin;Park, Jeen-Woo
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.43-46
    • /
    • 2001
  • $\alpha$-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. Recently, there has been considerable interest in the antioxidant nature of PBN on degenerative diseases, presumably related to oxidative stress. In the present study, the protective effect of PBN on the HepG2 cell line under oxidative stress was investigated. When the HepG2 cells were exposed to oxidant, such as hydrogen peroxide, menadione, or ethanol, the protective role of PBN was manifested as a reduction in trypan blue uptake and a decrease in the endogenous production of oxidants, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin. The modulation of activity of major antioxidant enzymes, such as superoxide dismutase and catalase, was not significantly different either in the presence or in the absence of PBN. This indicates that PBN acts as a direct scavenger of reactive oxygen species.

  • PDF