• 제목/요약/키워드: reactive oxygen and nitrogen species

검색결과 92건 처리시간 0.026초

GLEDITSIAE SPINA 에탄올 추출물 및 분획물이 산화적 스트레스와 human LDL 산화억제에 미치는 영향 (Preventive Effects of GLEDITSIAE SPINA Ethanol Extracts and its Fraction on Oxidative Stress and Human LDL Oxidation)

  • 김혁;이민자;이혜숙;정현정;최성규;이창섭;박원환
    • 동의생리병리학회지
    • /
    • 제23권3호
    • /
    • pp.631-638
    • /
    • 2009
  • GLEDITSIAE SPINA (GS) has been used as folk remedies traditionally for treatment of antiphlogistic and antifebrile agents. An ethanol extract and its fraction of GS were assessed to determine the mechanism of its antioxidant activity. Also, inhibitory effect of extract from GS and its fraction measuring the inhibitory effect on $Cu^{2+}$-induced human low-density lipoprotein (LDL) oxidation. GS ethanol extract and its fraction exhibited a concentration-dependent reactive oxygen species (ROS) and reactive nitrogen species (RNS) scavenging activities, including trolox equivalent antioxidant capacity (TEAC), OPPH radical, superoxide anion, hydroxyl radicals, peroxynitrite and nitric oxide, using different assay systems. Furthermore, the GS ethanol extract and its fraction showed dose-dependent protection of LDL oxidation induced by $CuSO_4$. In addition, the GS ethanol extract and its fraction were characterized as containing a high amount of total phenolics. These results suggest that GS ethanol extract and its fraction might be helpful for preventing oxidative stress and protecting LDL oxidation.

이정환(二精丸)이 노화과정에 미치는 영향 (Effects of Ichungwhan on the Aging Process)

  • 정지천;현민경
    • 대한한방내과학회지
    • /
    • 제26권2호
    • /
    • pp.379-389
    • /
    • 2005
  • Objectives: It is well known that aging and aging-related diseases are linked to the increased level of oxidative stress caused by reactive oxygen species(ROS) and reactive nitrogen species(RNS). Nonprotein-SH decreases during aging, while substances such as ROS, nitric oxide(NO), peroxynitrite($ONOO^-$), myeloperoxidase(MPO), and dityrosine show a significant increase. This study investigated the effect of Ichungwhan on the aging process by examining its effect on the generation of the above-mentioned substances. Methods: Four comparison groups of SD rats were used. They were 6 month-old rats, 24 month-old rats, and 24 month-old rats fed with food containing 0.1% and 0.3% of Ichungwhan extract. The amount of NO, $ONOO^-$, and ROS in the rats' kidneys were examined using a fluorescence microplate reader. The reagents used for this purpose include: dihydrorhodamine 123 (DHR 123), 2',7' -dichlorodihydrofluorescein, diacetate(DCFDA), and 4,5-diaminofluorescein(DAF-2). A spectrophotometer was used to investigate the reactivity of nonprotein-SH and myeioperoxidase(MPO), using reagents such as trichloroacetic acid(TCA) and tetramethylbenzidine(TMB). The amounts of MPO protein and dityrosine were measued by western blot. Results: The observed effects of Ichungwhan on rats were as follows: increase of nonprotein-SH; effective decrease of RNS level by suppression of the generation system of $ONOO^-$ and NO; decrease of ROS level; decrease of the MPO reactivity and the subsequent reduction of amount of MPO protein; retardation of dityrosine formation. It can be hypothesized, therefore, that Ichungwhan affects both the earlier and later phases of the molecular inflammatory process, and retards the aging process. Conclusions: Empirical evidence in this study supports a role for Ichungwhan in generation mechanisms of aging process-linked substances ROS, NO, $ONOO^-$, nonprotein-SH, MPO and dityrosine. Affects contrary to the aging process observed in rats beg further empiricism to investigate potential application of Ichungwhan as a medication for age-related diseases in humans.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF

How Extracellular Reactive Oxygen Species Reach Their Intracellular Targets in Plants

  • Jinsu Lee;Minsoo Han;Yesol Shin;Jung-Min Lee;Geon Heo;Yuree Lee
    • Molecules and Cells
    • /
    • 제46권6호
    • /
    • pp.329-336
    • /
    • 2023
  • Reactive oxygen species (ROS) serve as secondary messengers that regulate various developmental and signal transduction processes, with ROS primarily generated by NADPH OXIDASEs (referred to as RESPIRATORY BURST OXIDASE HOMOLOGs [RBOHs] in plants). However, the types and locations of ROS produced by RBOHs are different from those expected to mediate intracellular signaling. RBOHs produce O2•- rather than H2O2 which is relatively long-lived and able to diffuse through membranes, and this production occurs outside the cell instead of in the cytoplasm, where signaling cascades occur. A widely accepted model explaining this discrepancy proposes that RBOH-produced extracellular O2•- is converted to H2O2 by superoxide dismutase and then imported by aquaporins to reach its cytoplasmic targets. However, this model does not explain how the specificity of ROS targeting is ensured while minimizing unnecessary damage during the bulk translocation of extracellular ROS (eROS). An increasing number of studies have provided clues about eROS action mechanisms, revealing various mechanisms for eROS perception in the apoplast, crosstalk between eROS and reactive nitrogen species, and the contribution of intracellular organelles to cytoplasmic ROS bursts. In this review, we summarize these recent advances, highlight the mechanisms underlying eROS action, and provide an overview of the routes by which eROS-induced changes reach the intracellular space.

Model Development for the Nitrification-Denitrification Coupled Process

  • Lee, Mee-Sun;Lee, Kang-Kun
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.195-198
    • /
    • 2002
  • Nitrogen pollution in urban and rural groundwater is a common problem and poses a major threat to drinking water supplies based on groundwater. In this work, the kinetics of nitrification-denitrification coupled reactions are modeled and new reaction modules for the RT3D code (Clement, 1997) describing the fate and transport nitrogen species, dissolved oxygen, dissolved organic carbon, and biomass are developed. The proposed nitrogen transformations and transport model showed very good match with results of a conceptual model. However, the model simulation results for the major reactive species should be tested for validation using experimental and field data.

  • PDF

Feed Gas Dependent Nonthermal Plasma Interaction with Bio-organisms

  • Baik, Ku-Youn;Park, Gyung-Soon;Kim, Yong-Hee;Yoo, Young-Hyo;Lee, Jin-Young;Choi, Eun-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.174-174
    • /
    • 2012
  • The nature of feed gas is essential for the active species formed in the nonthermal plasma jets, which would induce various biological phenomena. We investigated the different physiological effects of atmospheric pressure soft-plasma jets on Esherichia coli and blood cells according to the feed gas. Cell death rate, growth curve, membrane molecular changes and induced genes were examined. The relationship between cellular reactions and active species generated by discharge will be discussed.

  • PDF

Effects of Reactive Oxygen Species and Nitrogen Species on the Excitability of Spinal Substantia Gelatinosa Neurons

  • Park, Joo Young;Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제41권3호
    • /
    • pp.141-147
    • /
    • 2016
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are both important signaling molecules involved in pain transmission in the dorsal horn of the spinal cord. Xanthine oxidase (XO) is a well-known enzyme for the generation of superoxide anions ($O_2^{\bullet-}$), while S-nitroso-N-acetyl-DL-penicillamine (SNAP) is a representative nitric oxide (NO) donor. In this study, we used patch clamp recording in spinal slices of rats to investigate the effects of $O_2^{\bullet-}$ and NO on the excitability of substantia gelatinosa (SG) neurons. We also used confocal scanning laser microscopy to measure XO- and SNAP-induced ROS and RNS production in live slices. We observed that the ROS level increased during the perfusion of xanthine and xanthine oxidase (X/XO) compound and SNAP after the loading of 2',7'-dichlorofluorescin diacetate ($H_2DCF-DA$), which is an indicator of intracellular ROS and RNS. Application of ROS donors such as X/XO, ${\beta}-nicotinamide$ adenine dinucleotide phosphate (NADPH), and 3-morpholinosydnomimine (SIN-1) induced a membrane depolarization and inward currents. SNAP, an RNS donor, also induced membrane depolarization and inward currents. X/XO-induced inward currents were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger) and manganese(III) tetrakis(4-benzoic acid) porphyrin (MnTBAP; superoxide dismutase mimetics). Nitro-L-arginine methyl ester (NAME; NO scavenger) also slightly decreased X/XO-induced inward currents, suggesting that X/XO-induced responses can be involved in the generation of peroxynitrite ($ONOO^-$). Our data suggest that elevated ROS, especially $O_2^{\bullet-}$, NO and $ONOO^-$, in the spinal cord can increase the excitability of the SG neurons related to pain transmission.

Pre- and Postsynaptic Actions of Reactive Oxygen Species and Nitrogen Species in Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제43권4호
    • /
    • pp.209-216
    • /
    • 2018
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are involved in cellular signaling processes as a cause of oxidative stress. According to recent studies, ROS and RNS are important signaling molecules involved in pain transmission through spinal mechanisms. In this study, a patch clamp recording was used in spinal slices of rats to investigate the action mechanisms of $O_2{^{{\bullet}_-}}$ and NO on the excitability of substantia gelatinosa (SG) neuron. The application of xanthine and xanthine oxidase (X/XO) compound, a ROS donor, induced inward currents and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSC) in slice preparation. The application of S-nitroso-N-acetyl-DL-penicillamine (SNAP), a RNS donor, also induced inward currents and increased the frequency of sEPSC. In a single cell preparation, X/XO and SNAP had no effect on the inward currents, revealing the involvement of presynaptic action. X/XO and SNAP induced a membrane depolarization in current clamp conditions which was significantly decreased by the addition of thapsigargin to an external calcium free solution for blocking synaptic transmission. Furthermore, X/XO and SNAP increased the frequency of action potentials evoked by depolarizing current pulses, suggesting the involvement of postsynaptic action. According to these results, it was estblished that elevated ROS and RNS in the spinal cord can sensitize the dorsal horn neurons via pre- and postsynaptic mechanisms. Therefore, ROS and RNS play similar roles in the regulation of the membrane excitability of SG neurons.

Reactive Oxygen Species and Nitrogen Species Differentially Regulate Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Lee, Hae In;Park, A-Reum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제39권4호
    • /
    • pp.229-236
    • /
    • 2014
  • Reactive oxygen species (ROS) and nitrogen species (RNS) are implicated in cellular signaling processes and as a cause of oxidative stress. Recent studies indicate that ROS and RNS are important signaling molecules involved in nociceptive transmission. Xanthine oxidase (XO) system is a well-known system for superoxide anions ($O{_2}^{{\cdot}_-}$) generation, and sodium nitroprusside (SNP) is a representative nitric oxide (NO) donor. Patch clamp recording in spinal slices was used to investigate the role of $O{_2}^{{\cdot}_-}$ and NO on substantia gelatinosa (SG) neuronal excitability. Application of xanthine and xanthine oxidase (X/XO) compound induced membrane depolarization. Low concentration SNP ($10{\mu}M$) induced depolarization of the membrane, whereas high concentration SNP (1 mM) evoked membrane hyperpolarization. These responses were significantly decreased by pretreatment with phenyl N-tert-butylnitrone (PBN; nonspecific ROS and RNS scavenger). Addition of thapsigargin to an external calcium free solution for blocking synaptic transmission, led to significantly decreased X/XO-induced responses. Additionally, X/XO and SNP-induced responses were unchanged in the presence of intracellular applied PBN, indicative of the involvement of presynaptic action. Inclusion of GDP-${\beta}$-S or suramin (G protein inhibitors) in the patch pipette decreased SNP-induced responses, whereas it failed to decrease X/XO-induced responses. Pretreatment with n-ethylmaleimide (NEM; thiol-alkylating agent) decreased the effects of SNP, suggesting that these responses were mediated by direct oxidation of channel protein, whereas X/XO-induced responses were unchanged. These data suggested that ROS and RNS play distinct roles in the regulation of the membrane excitability of SG neurons related to the pain transmission.

Effects of Antioxidants Supplement in Porcine Sperm Freezing on in vitro Fertilization and the Glutathione and Reactive Oxygen Species Level of Presumptive Zygotes

  • Park, Sang-Hyoun;Jeon, Yubyoel;Yu, Il-Jeoung
    • 한국수정란이식학회지
    • /
    • 제32권4호
    • /
    • pp.337-342
    • /
    • 2017
  • The present study was aimed to determine the effects of green tea extract (GTE) and beta-mercaptoethanol (${\beta}-ME$) supplementation in boar sperm freezing extender on in vitro fertilization (IVF) and reactive oxygen species (ROS) and glutathione (GSH) levels of presumptive zygotes (PZs). Experimental groups were allocated into lactose egg yolk (LEY) without antioxidant (control), GTE (1,000 mg/l in LEY) and ${\beta}-ME$ ($50{\mu}M$ in LEY). In freezing, spermatozoa extended with LEY were cooled to $5^{\circ}C$ for 3 h and then kept at $5^{\circ}C$ for 30 min following dilution with LEY containing 9% glycerol and 1.5% Equex STM. The final sperm concentration was $1{\times}10^8/ml$. Spermatozoa were loaded into straws and frozen in nitrogen vapor for 20 min. For IVF, oocytes were matured in NCSU-23 medium and co-cultured with spermatozoa following thawing at $37^{\circ}C$ for 25 sec. At 12 h following IVF, IVF parameters (sperm penetration and monospermy) were evaluated. In addition, GSH and ROS levels of PZs were determined by Cell Tracker Blue CMF2HC and DCHFDA, respectively. IVF parameters did not show any significant difference among the experimental groups. GSH and ROS levels of PZs were not significantly different between groups. In conclusion, antioxidant supplementation in boar sperm freezing could not influence IVF parameters, ROS and GSH levels of PZs.