• 제목/요약/키워드: reactive metabolites

검색결과 82건 처리시간 0.028초

여수 유류유출사고 방제작업자의 건강영향평가 (Health Effect Assessment on Cleanup Workers of an Oil Spill in Yeosu)

  • 김근배;강택신;윤미라;조혜정;주영경;유승도;이보은
    • 한국환경보건학회지
    • /
    • 제42권6호
    • /
    • pp.385-395
    • /
    • 2016
  • Objectives: The aim of this study was to assess exposure to VOCs and PAHs and the health effects on volunteers who participated in an oil spill cleanup in Yeosu. Methods: Atmospheric VOCs were evaluated in the vicinity of the accident site and questionnaire surveys were conducted to identify personal characteristics and acute health symptoms of clean-up workers seven days after the accident. The levels of metabolites of VOCs (t,t-MA, HA, PGA, MA, MHA) and PAHs (2-NAP, 1-OHP, 2-HF, 1-HPH), oxidative stress markers (TABARS, 8-OHdG) in the urine of workers were analyzed. Their correlation was determined by multiple regression analysis with SAS ver. 9.4. Results: Although the concentration of atmospheric VOCs in the residential areas were low at the time of survey, the levels of VOCs and PAHs metabolites in clean-up workers were higher than those in the control group after clean-up activities. The levels of urinary VOC and PAH metabolites were significantly increased after clean-up compared to those measured before participation. The thiobarbituric acid reactive substance (TBARS) concentrations were also increased and showed significant correlations with those of metabolites of benzene. Conclusion: This study shows that oil spill clean-up activities affect exposure to VOCs and PAHs and the health of clean-up workers. The results suggest the need for check-ups of participants in oil spill cleaning work.

Effect of Natural Compounds on Catechol Estrogen-Induced Carcinogenesis

  • Sung, Nam-Ji;Park, Sin-Aye
    • 대한의생명과학회지
    • /
    • 제25권1호
    • /
    • pp.1-6
    • /
    • 2019
  • The hydroxylation of estradiol results in the formation of catechol estrogens such as 2-hydroxyestradiol ($2-OHE_2$) and 4-hydroxyestradiol ($4-OHE_2$). These catechol estrogens are further oxidized to quinone metabolites by peroxidases or cytochrome P450 (CYP450) enzymes. Catechol estrogens contribute to hormone-induced carcinogenesis by generating DNA adducts or reactive oxygen species (ROS). Interestingly, many of the natural products found in living organisms have been reported to show protective effects against carcinogenesis induced by catechol estrogens. Although some compounds have been reported to increase the activity of catechol estrogens via oxidation to quinone metabolites, many natural products decreased the activity of catechol estrogens by inhibiting DNA adduct formation, ROS production, or oxidative cell damage. Here we focus specifically on the chemopreventive effects of these natural compounds against carcinogenesis induced by catechol estrogens.

Identification of N-acetyl and hydroxylated N-acetyltranylcypromine from tranylcypromine-dosed rat urine

  • Kang, Gun-Il;Chung, Soon-Young
    • Archives of Pharmacal Research
    • /
    • 제7권1호
    • /
    • pp.65-68
    • /
    • 1984
  • Mechanism of the monoamine oxidase inhibition by tranylcypromine was studied in relation to its metabolism to reactive apecies. A metabolic study performed to collect general biotransformation pathway in rats provided GC/MS evidence for the detection of two new metabolites, N-acetyl and hydroxylated N-acetyltranylacypromine.

  • PDF

DNA와 Benzo(a)pyrene 대사물질 결합형성에 미치는 인삼 추출물의 영향 (Effect of Ginseng Extracts on the Binding to DNA of Benzo(a)pyrene Metabolites in uitro in Rats)

  • 박진규;고지훈
    • Journal of Ginseng Research
    • /
    • 제13권1호
    • /
    • pp.37-41
    • /
    • 1989
  • Benzo(a)pyrene(BP)의 monooxygenase(AHH)에 의해서 생성된 반응성 대사물질들의 in vitro DNA와의 결합 및 BP 대사에 관여하는 효소들의 활성도에 미치는 인삼 물추출물의 영향을 조사하였으며, DNA-BP metabolite adduct들은 Sephadex LH-20 column으로 chromatography하여 5개의 major peak 들을 얻었다. 이 peak 들을 극성이 큰 순서대로 A부터 E까지 임의로 정하고 5개의 peak들을 7,8-diol-9,10-oxide(A), 7,8-oxide(B). 4,5-oxide(C), 9-HO-BP(D & E) adduct들로 잠정적으로 확인하였다. Peak A, C, D 그리고 E는 각각 대조군의 30, 15, 20 그리고 30%로 감소되었으며 peak B는 의미있는 변화를 보이지 않았다. DNA-BP 결합 억제와 관련하여 in vitro와 in vivo 투여시의 경향이 유사하여 EH의 활성도만 BP투여 대조군보다 38%정도 의미있게 유도되었다.

  • PDF

Catechol Estrogen 4-Hydroxyestradiol is an Ultimate Carcinogen in Breast Cancer

  • Park, Sin-Aye
    • 대한의생명과학회지
    • /
    • 제24권3호
    • /
    • pp.143-149
    • /
    • 2018
  • Excessive exposure to estrogens is the most important risk factor for the development of hormone-sensitive cancers, especially breast cancer. Estrogen stimulates the expression of genes and proteins involved in cell proliferation by binding to estrogen receptor (ER). Another possible mechanism of ER-independent carcinogenicity of estrogens is based on the hydroxylation of estradiol resulting in the formation of catechol estrogens. Catechol estrogen 4-hydroxyestradiol ($4-OHE_2$) is further oxidized to catechol estrogen-3,4-quinones, the major carcinogenic metabolites of estrogens. Evidence increasingly supports the critical role of $4-OHE_2$ in hormonal carcinogenesis via DNA adduct formation or production of reactive oxygen species, which finally contribute to the transformation of normal mammary epithelial cells and the enhanced growth of breast cancer cells. It is also reported that the level of $4-OHE_2$ or its quinones is highly up-regulated in urine or tissues of breast cancer patients. Thus, we highlight the oncogenic roles of $4-OHE_2$ in catechol estrogen-induced breast carcinogenesis.

치주인대세포에서 Aggregatibacter actinomycetemcomitans의 IL-8 및 활성산소종 유도능 (Induction of IL-8 and reactive oxygen species in periodontal ligament cells by Aggregatibacter actinomycetemcomitans)

  • 이양신;박홍규;김성환;차정헌;유윤정
    • Journal of Periodontal and Implant Science
    • /
    • 제39권3호
    • /
    • pp.331-337
    • /
    • 2009
  • Purpose: Interleukin (IL)-8 is one of pro-inflammatory cytokines. Reactive oxygen species (ROS) are reduced metabolites of $O_2$. Aggregatibacter actinomycetemcomitans is one of representative periodontopathogens. To investigate the role of A. actinomycetemcomitans in IL-8 expression of periodontal ligament (PDL) cells, we estimated the production of IL-8 and ROS in A. actinomycetemcomitans treated PDL cells. Methods: The IL-8 production was determined by enzyme-linked immunosorbent assay. The ROS production was estimated using H2DCFDA and FACS. Results: A. actinomycetemcomitans increased the production of IL-8 and ROS at 10, 100, and 500 multiplicity of infection. N-acetylcysteine, an antioxidant of ROS, down-regulated the production of IL-8 induced by A. actinomycetemcomitans. Conclusions: These results suggest that A. actinomycetemcomitans induces IL-8 production and ROS may act as a mediator in this process.

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D.;Osuntoki, A.A.;Awotula, A.O.;Kalyani, D.C.;Gbenle, G.O.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권6호
    • /
    • pp.843-849
    • /
    • 2013
  • A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

Acetaldehyde 유도 세포독성에 대한 항염증제의 영향 (Effects of Antiiflammatory Agents on Acetaldehyde Induced Cytotoxicity)

  • 이수환;이병훈;김강석;문창규
    • 한국식품위생안전성학회지
    • /
    • 제8권3호
    • /
    • pp.157-161
    • /
    • 1993
  • 본 연구는 ethanol의 reactive metabolite인 acetaldehyde의 일차 배양혈관 평활근 세포에 대한 독성 발현 양식을 규명하기 위한 연구의 일환으로, prostaglandin 합성과 세포독성과의 관련성 여부를 확인하기 위하여 수행되었다. Acetaldehyde는, 일차 배양 혈관 평활근 세포에서의 prostaglandin 합성을 현저히 증가 시켰으며, 이때, cyclooxygenase activity 는 큰 변화없거나 오히려 감소시키는 경향을 보였다. Cyclooxygenase inhibitor 인 indometancin은 acetaldehyde에 의한 LDH release를 현저히 차단시켰으며, aspirin 및 salicylic acid는 전혀 영향을 주지 못했다. Phospholipase $A_2\;(PLA_2)$ inhibitor로 알려져 있는 dexamethasone은 유의적인 세포 독성 경감 작용을 보이지 못하였으며, Lipoxygenase inhibitor 들인 NDGA, propyl gallate 등은 현저한 독성 경감 효과를 보였다. 이상의 결과로부터 acetaldehyde에 의한 일차 배양 혈과 평활근 세포에서의 prostaglandin 합성 증가는 Cell death에 대한 직접적인 원인이 아님을 추론할 수 있었으며, $PLA_2/lipoxygenase$ inhibitor들의 강력한 세포독성 경감 작용으로 미루어 볼 때, acetaldehyde 에 의한 세포독성은 lipoxygenase 대사 산물 혹은 $PLA_2$의 직접 작용에 기인할 가능성을 확인할 수 있었다.

  • PDF

Inhibitory Effect of Capsaicin against Carcinogen-induced Oxidative Damage in Rats

  • Yu, Ri-Na;Park, Min-Ah;Kawada, Teruo;Kim, Byung-Sam;Han, In-Seob;Yoo, Hoon
    • Preventive Nutrition and Food Science
    • /
    • 제7권1호
    • /
    • pp.67-71
    • /
    • 2002
  • Capsaicin (trans-8-methyl-N-vanillyl-6-nonenarnide), a major pungent component of hot pepper, is known to exert antioxidative properties. In this study, we investigated the protective effects of capsaicin against chemical carcinogen-induced oxidative damage in rats. Male Sprague Dawley rats weighting 230~250 g were treated with chemical carcinogens such as 2-nitropropane (2NP) or n-methyl-N'-nitro-N-nitrosoguanidine (MNNG) after (or before) the administration of capsaicin at doses of 0.5, 1,5 mg/kg. The level of lipid peroxidation in rat liver was estimated by measuring the amounts of thiobarbituric acid reactive substances. The degree of oxidative DNA damage was evacuated by measuring a DNA adduct, 8-hydroxydeoxyguanosine (8-OHdG), in urine. Antioxidative activities of capsaicin and its metabolites in vitro were determined by the measurement of DPPH (1,1-diphenyl-2-picrylhydrazyl), a radical quencher. Significant inhibition of 2-NP induced lipid peroxidation was observed in the liver of the rat when treated with capsaicin. MNNG-induced urinary excretion of 8-OHdG was decreased by capsaicin treatment. Capsaicin and its metabolites inhibited net only the formation of free radicals, but also lipid peroxidation in vitro. Our results show that capsaicin may function as a free radical scavenger against chemical carcinogen-induced oxidative cellular damage in vivo. The observed antioxidative activities of capsaicin may play an important role in the process of chemoprevention.

Adverse effects of pesticide/metabolites on boar spermatozoa

  • Wijesooriya Mudhiyanselage Nadeema Dissanayake;Jung Min Heo;Young-Joo Yi
    • 농업과학연구
    • /
    • 제50권4호
    • /
    • pp.941-952
    • /
    • 2023
  • The metabolites of agrichemicals, such as organophosphorus pesticides, are known to be more hazardous than their parent pesticides. 3,5,6-trichloro-2-pyridinol (TCP) is a major degradation product of chlorpyrifos, one of the organophosphate insecticides widely used in agriculture. In vivo or in vitro exposure to chlorpyrifos has been known to interfere with male reproductive functions, leading to reduced fertility in mammals. Therefore, this study was performed to examine the changes in the fertilization competence of boar spermatozoa exposed to TCP. Sperm samples were subjected to varying concentrations of TCP (10, 50, 100, 200 µM) and different periods of incubation. Sperm motility, motion kinematics, viability, acrosome integrity, intracellular reactive oxygen species (ROS) production, and gene expression levels (ODf2, ZPBP2, AKAP3 and AKAP4) were evaluated after exposure of the sperm to TCP. A significant dose-dependent reduction in motility was observed in sperm samples incubated with TCP compared to the controls after both incubation periods. Sperm viability was significantly decreased in samples incubated with 50, 100, and 200 µM TCP in both incubation periods. A significantly lower percentage of normal acrosomes and gene expression levels were observed in sperm samples exposed to 50, 100, and 200 µM TCP after both incubation periods, compared to the controls. There was a significant increase in the ROS production in spermatozoa incubated with 100 - 200 µM TCP after both incubation periods. Consequently, the direct exposure of boar spermatozoa to TCP interferes with sperm functions and leads to decreased fertilization. In order to identify and address the various causes of reproductive decline, the impact of chemical metabolites needs to be discussed in depth.