• 제목/요약/키워드: reactive forms

검색결과 78건 처리시간 0.032초

Effect of Alpha Lipoic Acid on in vitro Maturation of Porcine Oocytes and Subsequent Embryonic Development after Parthenogenetic Activation

  • Kang, Young-Hun;Hyun, Sang-Hwan
    • 한국수정란이식학회지
    • /
    • 제32권4호
    • /
    • pp.267-274
    • /
    • 2017
  • Alpha lipoic acid (ALA) is a biological membranes compound. As the antioxidant, it decreases the oxidized forms of other antioxidant substances such as vitamin C, vitamin E, and glutathione (GSH). To examine the effect of ALA on the in vitro maturation (IVM) of porcine oocytes, we investigated intracellular GSH and reactive oxygen species (ROS) levels, and subsequent embryonic development after parthenogenetic activation (PA). Intracellular GSH levels in oocytes treated with 50uM ALA increased significantly (P < 0.05) and exhibited a significant (P < 0.05) decrease in intracellular ROS levels compared with the control group. Oocytes matured with 50 uM of ALA during IVM displayed significantly higher cleavage rates (67.8% vs. 83.4%, respectively), and higher blastocyst formation rates and total cell number of blastocysts after PA (31.6%, 58.49 vs. 46.8%, 68.58, respectively) than the control group. In conclusion, these results suggest that treatment with ALA during IVM improves the cytoplasmic maturation of porcine oocytes by increasing the intracellular GSH levels, thereby decreasing the intracellular ROS levels and subsequent embryonic developmental potential of PA.

Relative Reactivity of Various Al-substituted-dialkylalans in Reduction of Carbonyl Compounds: A Theoretical Study on Substituent Effect

  • Nahm, Keepyung;Cha, Jin Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2335-2339
    • /
    • 2013
  • Relative reactivity of various Al-substituted dialkylalans ($AlR_2(X)$) in reduction of acetone has been studied with density functional theory and MP2 method. Formation of the alan dimers and the alan-acetone adduct, and the transition state for the Meerwein-Ponndorf-Verley (MPV) type reduction of the adduct were calculated to figure out the energy profile. Formation of dimeric alans is highly exothermic. Both the relative free energies for acetone-alan adduct formation and the TS barriers for the MPV type reduction with respect to alan dimers and acetone were calculated and they show the same trend. Based on these energetic data, relative reactivity of alans is expected to be; $AlR_2(Cl)$ > $AlR_2(OTf)$ > $AlR_2(O_2CCF_3)$ > $AlR_2(F)$ > $AlR_2(OMs)$ > $AlR_2(OAc)$ > $AlR_2(OMe)$ > $AlR_2(NMe_2)$. The energy profile is relatively well correlated with the experimental order of the reactivity of Al-substituted dialkylalans. It is noted that the substituents of alans have initial effects on the relative free energies for the carbonyl-adduct formation. Therefore, an $AlR_2(X)$ which forms a more stable carbonyl-adduct is more reactive in carbonyl reduction.

Recent advances in carbon-11 chemistry

  • Lu, Yingqing;Lee, Byung Chul;Kim, Sang Eun
    • 대한방사성의약품학회지
    • /
    • 제2권1호
    • /
    • pp.9-16
    • /
    • 2016
  • Carbon-11 is one of the most sensitive and desirable positron emission tomography radio-isotope, which offers the capacity to be incorporated, through a covalent bond, into biologically active molecules without altering their biological properties. Carbon-11 can be obtained from the cyclotron with two different chemical forms: $[^{11}C]CO_2$ and $[^{11}C]CH_4$. [$^{11}C$]Methyl iodide has been widely used as a highly reactive labelling precursor that can be applied to label carbon-11 with biologically active molecules via alkylation of N-, O-, or S-nucleophiles. A more recent and still challenging labeling method is transition metal mediated $^{11}C$-carbonylation. Advances in organic chemistry, radiochemistry and improved automated techniques greatly encourage researchers to develop more carbon-11 labelled radiotracers for molecular imaging studies. This mini-review will introduce a historical track of carbon-11 chemistry combining with examples and its role in near future.

Inhibitory Effect of Vitamin C on Mutagenicity of 6-Sulfooxymethylbenzo[a]pyrene

  • Cho, Young-Sik;Hong, Sun-Taek;Chung, An-Sik
    • Toxicological Research
    • /
    • 제12권1호
    • /
    • pp.21-27
    • /
    • 1996
  • Vitamin C has been well known to be a potential chemopreventive agent for several toxic compounds. It reduced the mutation frequencies of 6-sulfooxymethylbenzo[a]pyrene (SMBP) and 6hydroxymethylbenzo[a]pyrene (HMBP) in Salmonella typhimurium TA98 and TA100, indicating that corbic acid affects both frameshift and base-pair substitution mtltations. A similar type of dose-response relationship was shown in the V79 cells, although the inhibitory effect was less dramatic compared with that in S. typhimurium. However, SMBP or HMBP binding to calf thymus DNA was not affected by the presence of vitamin C, suggesting that SMBP seems to be much more reactive to calf thymus DNA than vitamin C. This was supported by migration pattern and fluorescence intensity of SMBP-modified plasmid on the gel. These restilts were not correlated with mutation tests in bacterial and mammalian cell systems. It has been already reported that vitamin C inactivates SMBP through the formation of covalently bound addact. It was found from HPLC analysis that the reaction between vitamin C and SMBP was accomplished within just 5 min and then produced the several products. These findings indicate that the beneficiary of vitamin C is not merely derived from the covalent adducts. On the other hand, the addition of DNA to incubation mixture reduced the amounts of vitamin C adducts while the magnitude of HMBP peak increased, suggesting that DNA accelerates the SMBP hydrolysis to intercept the interaction between SMBP and vitamin C or forms rapidly complex with SMBP.

  • PDF

Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal

  • Putker, Marrit;O'Neill, John Stuart
    • Molecules and Cells
    • /
    • 제39권1호
    • /
    • pp.6-19
    • /
    • 2016
  • Redox signalling comprises the biology of molecular signal transduction mediated by reactive oxygen (or nitrogen) species. By specific and reversible oxidation of redoxsensitive cysteines, many biological processes sense and respond to signals from the intracellular redox environment. Redox signals are therefore important regulators of cellular homeostasis. Recently, it has become apparent that the cellular redox state oscillates in vivo and in vitro, with a period of about one day (circadian). Circadian timekeeping allows cells and organisms to adapt their biology to resonate with the 24-hour cycle of day/night. The importance of this innate biological timekeeping is illustrated by the association of clock disruption with the early onset of several diseases (e.g. type II diabetes, stroke and several forms of cancer). Circadian regulation of cellular redox balance suggests potentially two distinct roles for redox signalling in relation to the cellular clock: one where it is regulated by the clock, and one where it regulates the clock. Here, we introduce the concepts of redox signalling and cellular timekeeping, and then critically appraise the evidence for the reciprocal regulation between cellular redox state and the circadian clock. We conclude there is a substantial body of evidence supporting circadian regulation of cellular redox state, but that it would be premature to conclude that the converse is also true. We therefore propose some approaches that might yield more insight into redox control of cellular timekeeping.

흰쥐 인슐린종세포에서 고농도 포도당의 Alloxan 독성 증강 효과 (High Glucose Potentiates the Alloxan-induced Cytotoxicity in Cultured Rat Insulinoma Cells)

  • 이병래;차종희;박재윤;고춘남;박평심
    • 한국식품영양과학회지
    • /
    • 제29권5호
    • /
    • pp.875-880
    • /
    • 2000
  • Reactive oxygen species are produced under diabetic conditions and possibly cause various forms of tissue damage in patients with diabetes mellitus. The aim of this study was to examine the effects of high glucose on the alloxan-induced beta cell injury. The insulinoma (RINm5F) cells were clutured either with high glucose (22.2 mM) or normoglucose (5.6 mM) in RPMI 1460 media for 3 days. The SOD activities were determined by spectrophotometric assay and nitroblue tetrazolium (NBT) stain. The effects of high glucose on the cytotoxicity of alloxan were also investigated in RINm5F cells and the cells viability were determined by 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) methods. Results showed that the CuZn-SOD activity was decreased but Mn-SOD activity was increased significantly in RINm5F cells cultured with high glucose (22.2 mM) media. The cytotoxicity of alloxan was increased by high glucose compared with normoglucose in RINm5F cells. Diethyl-dithiocarbarmate (DDC), as inhibitor of CuZn-SOC, also potentiate the alloxan-induced cytotoxocity in RINm5F cells. These results suggest that, in RINm5F cells, short term culture with high glucose media decreases Cu-Zn-SOD activity and the decreased activity of CuZn-SOD many one of the causative factors of beta-cell injury induced by high glucose.

  • PDF

Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat

  • Zhang, Muhan;Yan, Weili;Wang, Daoying;Xu, Weimin
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1382-1391
    • /
    • 2021
  • Objective: The objective was to evaluate the impact of different forms of iron including myoglobin, hemin, and ferric chloride on the quality of chicken breast meat. Methods: Chicken breast muscles were subjected to 1, 2, 3 mg/mL of FeCl3, myoglobin and hemin treatment respectively, and the production of reactive oxygen species (ROS) and malondialdehyde, meat color, tenderness, water holding capacity and morphology of meat was evaluated. Results: Hemin was found to produce more ROS and induce greater extent of lipid oxidation than myoglobin and ferric chloride. However, it showed that hemin could significantly increase the redness and decrease the lightness of the muscle. Hemin was also shown to be prominent in improving water holding capacity of meat, maintaining a relatively higher level of the immobilized water from low-field nuclear magnetic resonance measurements. Morphology observation by hematoxylin-eosin staining further confirmed the results that hemin preserved the integrity of the muscle. Conclusion: The results indicated that hemin may have economic benefit for the industry based on its advantage in improving water holding capacity and quality of meat.

Signaling Role of NADPH Oxidases in ROS-Dependent Host Cell Death Induced by Pathogenic Entamoeba histolytica

  • Lee, Young Ah;Sim, Seobo;Kim, Kyeong Ah;Shin, Myeong Heon
    • Parasites, Hosts and Diseases
    • /
    • 제60권3호
    • /
    • pp.155-161
    • /
    • 2022
  • All living organisms are destined to die. Cells, the core of those living creatures, move toward the irresistible direction of death. The question of how to die is critical and is very interesting. There are various types of death in life, including natural death, accidental death, questionable death, suicide, and homicide. The mechanisms and molecules involved in cell death also differ depending on the type of death. The dysenteric amoeba, E. histolytica, designated by the German zoologist Fritz Schaudinn in 1903, has the meaning of tissue lysis; i.e., tissue destroying, in its name. It was initially thought that the amoebae lyse tissue very quickly leading to cell death called necrosis. However, advances in measuring cell death have allowed us to more clearly investigate the various forms of cell death induced by amoeba. Increasing evidence has shown that E. histolytica can cause host cell death through induction of various intracellular signaling pathways. Understanding of the mechanisms and signaling molecules involved in host cell death induced by amoeba can provide new insights on the tissue pathology and parasitism in human amoebiasis. In this review, we emphasized on the signaling role of NADPH oxidases in reactive oxygen species (ROS)-dependent cell death by pathogenic E. histolytica.

Stabilizing Li2O-based Cathode/Electrolyte Interfaces through Succinonitrile Addition

  • Myeong Jun Joo;Yong Joon Park
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.231-242
    • /
    • 2023
  • Li2O-based cathodes utilizing oxide-peroxide conversion are innovative next-generation cathodes that have the potential to surpass the capacity of current commercial cathodes. However, these cathodes are exposed to severe cathode-electrolyte side reactions owing to the formation of highly reactive superoxides (Ox-, 1 ≤ x < 2) from O2- ions in the Li2O structure during charging. Succinonitrile (SN) has been used as a stabilizer at the cathode/electrolyte interface to mitigate cathode-electrolyte side reactions. SN forms a protective layer through decomposition during cycling, potentially reducing unwanted side reactions at the interface. In this study, a composite of Li2O and Ni-embedded reduced graphene oxide (LNGO) was used as the Li2O-based cathode. The addition of SN effectively thinned the interfacial layer formed during cycling. The presence of a N-derived layer resulting from the decomposition of SN was observed after cycling, potentially suppressing the formation of undesirable reaction products and the growth of the interfacial layer. The cell with the SN additive exhibited an enhanced electrochemical performance, including increased usable capacity and improved cyclic performance. The results confirm that incorporating the SN additive effectively stabilizes the cathode-electrolyte interface in Li2O-based cathodes.

압력구배의 주기적 변화에 따른 한외여과 Flux의 변화 (Response of Ultrafiltration Flux to Periodic Oscillations in Transmembrane Pressure Gradient)

  • 서창우;이은규
    • KSBB Journal
    • /
    • 제14권2호
    • /
    • pp.230-234
    • /
    • 1999
  • 한외여과공정에서 압력구배를 주기적으로 변화시켜 막 표면의 용질층을 불안정화시켜 여과 flux의 총괄적 향상을 유도한 실험을 수행하였다. 일정압력에서의 여과 flux 감소현상을 Hernia 식을 사용하여 모사하였고, 또한 압력구배의 주기적 변화를 Fourer series로 표현하여 압력구배의 변화에 따른 flux 변화를 수학적으로 모사하였고 이 결과를 실제의 실험결과와 비교하여 보았다. 수학적 모사결과 압력변화의 형태, 진폭, 주기 등의 변화에 따른 평균 flux의 변화는 미미하였다. 하지만 실제실험결과 주기적으로 압력구배를 변화시킨 경우 약 11%의 향상을 관찰할 수 있었다. 이는 압력구배가 주기적으로 변하는 과정에서의 응질층의 압축이완속도가 다른 것에 기인하는 것으로 유추된다. 주기적 압력구배변화외에 feed pump interruption을 이용하여 평균총괄 flux를 약 32%까지 향상 시켰다. 역확산에 의한 용질층의 이완에는 일정한 시간이 필요함을 찾아내었고 interruption은 용질층이 형성되기 전부터 시작하는 것이 유리하다고 판단되었다. 본 실험을 위하여 한외여과의 자동제어 시스템을 설계제작하여 다양한 압력함수를 이용할 수 있었고, 공정운영 중 압력구매와 여과 flux를 실시간 모니터링 및 제어할 수 있었다. 자동제어 시스템을 통해 압력구매를 주기적으로 변화시켜 총괄 flux의 극대화를 도모하는 기법은 기존장치를 최소로 변경시키면서 한외여과성능을 극대화시킬 수 있는 방법으로 기대된다.

  • PDF