Browse > Article
http://dx.doi.org/10.3347/kjp.2022.60.3.155

Signaling Role of NADPH Oxidases in ROS-Dependent Host Cell Death Induced by Pathogenic Entamoeba histolytica  

Lee, Young Ah (Department of Environmental Medical Biology, College of Medicine, Yonsei University)
Sim, Seobo (KU Open Innovation Center, Department of Environmental and Tropical Medicine, School of Medicine, Konkuk Universit)
Kim, Kyeong Ah (Gachon Biomedical & Convergence Institute, Gil Medical Center, Gachon University College of Medicine)
Shin, Myeong Heon (Department of Environmental Medical Biology, College of Medicine, Yonsei University)
Publication Information
Parasites, Hosts and Diseases / v.60, no.3, 2022 , pp. 155-161 More about this Journal
Abstract
All living organisms are destined to die. Cells, the core of those living creatures, move toward the irresistible direction of death. The question of how to die is critical and is very interesting. There are various types of death in life, including natural death, accidental death, questionable death, suicide, and homicide. The mechanisms and molecules involved in cell death also differ depending on the type of death. The dysenteric amoeba, E. histolytica, designated by the German zoologist Fritz Schaudinn in 1903, has the meaning of tissue lysis; i.e., tissue destroying, in its name. It was initially thought that the amoebae lyse tissue very quickly leading to cell death called necrosis. However, advances in measuring cell death have allowed us to more clearly investigate the various forms of cell death induced by amoeba. Increasing evidence has shown that E. histolytica can cause host cell death through induction of various intracellular signaling pathways. Understanding of the mechanisms and signaling molecules involved in host cell death induced by amoeba can provide new insights on the tissue pathology and parasitism in human amoebiasis. In this review, we emphasized on the signaling role of NADPH oxidases in reactive oxygen species (ROS)-dependent cell death by pathogenic E. histolytica.
Keywords
Entamoeba histolytica; host cell death; NADPH oxidases; ROS;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ragland BD, Ashley LS, Vaux DL, Petri WA Jr. Entamoeba histolytica: target cells killed by trophozoites undergo DNA fragmentation which is not blocked by Bcl-2. Exp Parasitol 1994; 79: 460-467. https://doi.org/10.1006/expr.1994.1107   DOI
2 Kim KA, Lee YA, Shin MH. Calpain-dependent calpastatin cleavage regulates caspase-3 activation during apoptosis of Jurkat T cells induced by Entamoeba histolytica. Int J Parasitol 2007; 37: 1209-1219. https://doi.org/10.1016/j.ijpara.2007.03.011   DOI
3 Ralston KS, Solga MD, Mackey-Lawrence NM, Somlata, Bhattacharya A, Petri WA Jr. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature 2014; 508: 526-530. https://doi.org/10.1038/nature13242   DOI
4 Ralston KS. Chew on this: amoebic trogocytosis and host cell killing by Entamoeba histolytica. Trends Parasitol 2015; 31: 442-452. https://doi.org/10.1016/j.pt.2015.05.003   DOI
5 Miller HW, Suleiman RL, Ralston KS. Trogocytosis by Entamoeba histolytica mediates acquisition and display of human cell membrane proteins and evasion of lysis by human serum. mBio 2019; 10: e00068. https://doi.org/10.1128/mBio.00068-19   DOI
6 Ravdin JI, Moreau F, Sullivan JA, Petri WA Jr, Mandell GL. Relationship of free intracellular calcium to the cytolytic activity of Entamoeba histolytica. Infect Immun 1988; 56: 1505-1512. https://doi.org/10.1128/iai.56.6.1505-1512.1988   DOI
7 Geiszt M, Leto TL. The Nox family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 2004; 279: 51715-51718. https://doi.org/10.1074/jbc.R400024200   DOI
8 Teixeira JE, Mann BJ. Entamoeba histolytica-induced dephosphorylation in host cells. Infect Immun 2002; 70: 1816-1823. https://doi.org/10.1128/IAI.70.4.1816-1823.2002   DOI
9 Kim KA, Kim JY, Lee YA, Song KJ, Min D, Shin MH. NOX1 participates in ROS-dependent cell death of colon epithelial Caco-2 cells induced by Entamoeba histolytica. Microbes Infect 2011; 13:1052-1061. https://doi.org/10.1016/j.micinf.2011.06.001   DOI
10 Song KJ, Jang YS, Lee YA, Kim KA, Lee SK, Shin MH. Reactive oxygen species-dependent necroptosis in Jurkat T cells induced by pathogenic free-living Naegleria fowleri. Parasite Immunol 2011; 33: 390-400. https://doi.org/10.1111/j.1365-3024.2011.01297.x   DOI
11 Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87: 245-313. https://doi.org/10.1152/physrev.00044.2005   DOI
12 Lee YA, Min A, Shin MH. O-deGlcNAcylation is required for Entamoeba histolytica-induced HepG2 cell death. Microb Pathog 2018; 123: 285-295. https://doi.org/10.1016/j.micpath.2018.07.012   DOI
13 Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 2002; 166 (suppl): 4-8 https://doi.org/10.1164/rccm.2206007   DOI
14 Lambeth JD. Nox enzymes and the biology of reactive oxygen. Nat Rev Immunol 2004; 4: 181-189. https://doi.org/10.1038/nri1312   DOI
15 Zhang Z, Wang L, Seydel KB, Li E, Ankri S, Mirelman D, Stanley SL Jr. Entamoeba histolytica cysteine proteinases with interleukin1β converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol Microbiol 2000; 37: 542-548. https://doi.org/10.1046/j.1365-2958.2000.02037.x   DOI
16 Stanley SL Jr. Amoebiasis. Lancet 2003; 361: 1025-1034. https://doi.org/10.1016/S0140-6736(03)12830-9   DOI
17 Petri WA Jr, Haque R, Mann BJ. The bittersweet interface of parasite and host: lectin-carbohydrate interactions during human invasion by the parasite Entamoeba histolytica. Annu Rev Microbiol 2002; 56: 39-64. https://doi.org/10.1146/annurev.micro.56.012302.160959   DOI
18 Moncada D, Keller K, Ankri S, Mirelman D, Chadee K. Antisense inhibition of Entamoeba histolytica cysteine proteases inhibits colonic mucus degradation. Gastroenterology 2006; 130: 721-730. https://doi.org/10.1053/j.gastro.2005.11.012   DOI
19 Quach J, Moreau F, Sandall C, Chadee K. Entamoeba histolytica-induced IL-1β secretion is dependent on caspase-4 and gasdermin D. Mucosal Immunol 2019; 12: 323-339. https://doi.org/10.1038/s41385-018-0101-9   DOI
20 Wang S, Moreau F, Chadee K. The colonic pathogen Entamoeba histolytica activates caspase-4/1 that cleaves the pore-forming protein gasdermin D to regulate IL-1β secretion. PLoS Pathog 2022; 18: e1010415. https://doi.org/10.1371/journal.ppat.1010415   DOI
21 Kim JM, Jung HC, Im K, Cho YJ, Kim CY. Interleukin-8 gene expression in the human colon epithelial cell line, HT-29, exposed to Entamoeba histolytica. Korean J Parasitol 1995; 33: 357-364 (in Korea). https://doi.org/10.3347/kjp.1995.33.4.357   DOI
22 Yu Y, Chadee K. Entamoeba histolytica stimulates interleukin 8 from human colonic epithelial cells without parasite-enterocyte contact. Gastroenterology 1997; 112: 1536-1547. https://doi.org/10.1016/s0016-5085(97)70035-0   DOI
23 Lee YA, Nam YH, Min A, Kim KA, Nozaki T, Saito-Nakano Y, Mirelman D, Shin MH. Entamoeba histolytica-secreted cysteine proteases induce IL-8 production in human mast cells via a PAR2-independent mechanism. Parasite 2014; 21: 1-9. https://doi.org/10.1051/parasite/2014001   DOI
24 Berninghausen O, Leippe M. Necrosis versus apoptosis as the mechanism of target cell death induced by Entamoeba histolytica. Infect Immun 1997; 65: 3615-3621. https://doi.org/10.1128/iai.65.9.3615-3621.1997   DOI
25 Nirmala JG, Lopus M. Cell death mechanisms in eukaryotes. Cell Biol Toxicol 2020; 36: 145-164. https://doi.org/10.1007/s10565-019-09496-2   DOI
26 Dagenais M, Douglas T, Saleh M. Role of programmed necrosis and cell death in intestinal inflammation. Curr Opin Gastroenterol 2014; 30: 566-575. https://doi.org/10.1097/MOG.0000000000000117   DOI
27 Kim KA, Kim JY, Lee YA, Min A, Bahk YY, Shin MH. Entamoeba histolytica induces cell death of HT29 colonic epithelial cells via NOX1-derived ROS. Korean J Parasitol 2013; 51: 61-68. https://doi.org/10.3347/kjp.2013.51.1.61   DOI
28 Sim S, Yong TS, Park SJ, Im KI, Kong Y, Ryu JS, Min DY, Shin MH. NADPH oxidase-derived reactive oxygen species-mediated activation of ERK1/2 is required for apoptosis of human neutrophils induced by Entamoeba histolytica. J Immunol 2005; 174: 4279-4288. https://doi.org/10.4049/jimmunol.174.7.4279   DOI
29 Stalin J, Garrido-Urbani S, Heitz F, Szyndralewiez C, Jemelin S, Coquoz O, Ruegg C, Imhof BA. Inhibition of host NOX1 blocks tumor growth and enhances checkpoint inhibitor-based immunotherapy. Life Sci Alliance 2019; 27: e201800265. https://doi.org/10.26508/lsa.201800265   DOI
30 Kim KA, Kim JY, Lee YA, Song KJ, Min D, Shin MH. NOX1 participates in ROS-dependent cell death of colon epithelial Caco2 cells induced by Entamoeba histolytica. Microbes Infect 2011; 13: 1052-1061. https://doi.org/10.1016/j.micinf.2011.06.001   DOI
31 Jang YS, Song KJ, Kim JY, Lee YA, Kim KA, Lee SK, Shin MH. Calpains are involved in Entamoeba histolytica-induced death of HT29 colonic epithelial cells. Korean J Parasitol 2011; 49: 177-180. https://doi.org/10.3347/kjp.2011.49.2.177   DOI
32 Lee JE, Cho KE, Lee KE, Kim J, Bae YS. NOX4-mediated cell signaling regulates differentiation and survival of neural crest stem cells. Mol Cells 2014; 31; 907-911. https://doi.org/10.14348/molcells.2014.0244   DOI
33 Lee YA, Kim KY, Min A, Shin MH. NOX4 activation is involved in ROS-dependent Jurkat T-cell death induced by Entamoeba histolytica. Parasite 2019; 41: e12670. https://doi.org/10.1111/pim.12670   DOI
34 Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, Gorlach A. NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid Redox Signal 2006; 8: 1473-1484. https://doi.org/10.1089/ars.2006.8.1473   DOI
35 Sipkens JA, Hahn N, van den Brand CS, Meischl C, Cillessen SA, Smith DE, Juffermans LJ, Musters RJ, Roos D, Jakobs C, Blom HJ, Smulders YM, Krijnen PA, Stehouwer CD, Rauwerda JA, van Hinsbergh VW, Niessen HW. Homocysteine-induced apoptosis in endothelial cells coincides with nuclear NOX2 and peri-nuclear NOX4 activity. Cell Biochem Biophys 2013; 67: 341-352. https://doi.org/ 10.1007/s12013-011-9297-y   DOI
36 Biasi F, Chiarpotto E, Sottero B, Maina M, Mascia C, Guina T, Gamba P, Gargiulo S, Testa G, Leonarduzzi G, Poli G. Evidence of cell damage induced by major components of a diet-compatible mixture of oxysterols in human colon cancer CaCo-2 cell line. Biochimie 2013; 95: 632-640. https://doi.org/10.1016/j.biochi.2012.10.011   DOI
37 Miller HW, Tam TSY, Ralston KS. Entamoeba histolytica develops resistance to complement deposition and lysis after acquisition of human complement-regulatory proteins through trogocytosis. mBio 2022; 26: e0316321. https://doi.org/10.1128/mbio.03163-21   DOI
38 Sim S, Kim KA, Yong TS, Park SJ, Im KI, Shin MH. Ultrastructural observation of human neutrophils during apoptotic cell death triggered by Entamoeba histolytica. Korean J Parasitol 2004; 42: 205-208. https://doi.org/10.3347/kjp.2004.42.4.205   DOI
39 Kim KA, Lee YA, Shin MH. Calpain-dependent cleavage of SHP1 and SHP-2 is involved in the dephosphorylation of Jurkat T cells induced by Entamoeba histolytica. Parasite Immunol 2010; 32: 176-183. https://doi.org/10.1111/j.1365-3024.2009.01175.x   DOI
40 Elksnis A, Cen J, Wikstrom P, Carlsson PO, Welsh N. Pharmacological Inhibition of NOX4 improves mitochondrial function and survival in human beta-cells. Biomedicines 2021; 9: 1865-1875. https://doi.org/10.3390/biomedicines9121865   DOI
41 Seydel KB, Stanley SL Jr. Entamoeba histolytica induces host cell death in amebic liver abscess by a non-Fas-dependent, non-tumor necrosis factor α-dependent pathway of apoptosis. Infect Immun 1998; 66: 2980-2983. https://doi.org/10.1128/IAI.66.6.2980-2983.1998   DOI
42 Yan G, Elbadawi M, Efferth T. Multiple cell death modalities and their key features (Review). World Acad Sci J 2020; 2: 39-48. https://doi.org/10.3892/wasj.2020.40   DOI
43 Huston CD, Houpt ER, Mann BJ, Hahn CS, Petri WA Jr. Caspase 3-dependent killing of host cells by the parasite Entamoeba histolytica. Cell Microbiol 2000; 2: 617-625. https://doi.org/10.1046/j.1462-5822.2000.00085.x   DOI