• Title/Summary/Keyword: reactive dyes

Search Result 183, Processing Time 0.028 seconds

A Study on the Substitution of Cr-containing Metal Complex Dyestuff with Reactive Dyestuff (반응성염료를 통한 Cr 함유 금속착염염료의 대체를 위한 연구)

  • Park, Young-Hwan;Kim, Moon-Jung;Lee, Hea-Jung;Lim, Jae-Ho;Ryu, Tae-Soo
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.91-101
    • /
    • 2009
  • The metal complex dyes that are mainly used for good color fastness in dyeing amide fibers with highly concentrated colors usually contain toxic chromium. The remaining dye in th dyebath containing $Cr^{6+}$ causes not only environmental problems but also serious damages to human health. In this study, we applied reactive dyestuff for dyeing wool and nylon in order to substitute heavy metal dyestuff. The dyeing properties of reactive dyestuff in fibers as well as their absorption rates and fastness according to color concentration were investigated. By analyzing the quantity of heavy metals and toxic amine of reactive dyestuff, we investigated their harmfulness trends quantitatively. By comparing the reactive dyes with traditional metal complex dyes, we tried to find out the possibility of the reactive dye being a clean dyes in the future.

Dyeing Property of Acrylic/Cotton Fabric Blends (아크릴/면 혼방직물의 염색성)

  • Lee, Bong kyu;Park, Yoon Cheol;Kim, Jin Woo
    • Textile Coloration and Finishing
    • /
    • v.7 no.2
    • /
    • pp.17-23
    • /
    • 1995
  • In order to study the dyeing property of acrylic and cotton blends with cationic and reactive dyes, staining on cotton of cationic dyes, stability of cationic dyes, and fastness properties in various conditions were investigated. The restlts obatined from this study are summarized as follows: 1. Cationic oxazine dyes showed good stability in comparison with cationic azo dyes. 2. Staining of cationic dyes on cotton was gradually increased with pH and neutral salt concentration, but decreased with dyeing time and dyeing temperture.

  • PDF

Dyeing Properties of Bi-functional Reactive Dyes on a Novel Regenerated Cellulosic Fiber

  • Koh, Joonseok;Kim, Ik Soo;Kim, Sung Soo;Shim, Woo Sub;Kim, Jae Pil
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.44-51
    • /
    • 2004
  • Three bi-functional reactive dyes such as Bis(vinylsulphone) type, Bis(monochlorotriazine) type and Bis(mononicotinotriazine) type were applied to regular viscose rayon and new regenerated cellulosic fiber ($enVix^ⓡ$) which was prepared from cellulose acetate fiber by the hydrolysis of acetyl groups, and their dyeing properties and fastness properties were compared. enVix exhibited better dyeability and fastness than regular viscose rayon and these results were also explained by the differences in the supramolecular structure of these two fibers.

Investigation of Color Decomposition for Textile Printing Materials

  • Park Su-Yeol;Jeon Geun;Sin Seung-Rim;Sin Jong-Il;Mun Su-Jin;SeonU Gong-Hyeon
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2006.04a
    • /
    • pp.180-181
    • /
    • 2006
  • The hydrolysis of some vinylsulfonyl (VS) typed reactive dyes were investigated at the pH, temperature and other experimental conditions. The hydrolytic behaviour, especially, stability in various pH value, of the water soluble reactive dyes are examined. In neutral and acid condition, mother dyes are a quite stable. Other hand, it was found that dimerization and decomposition for these dyes were estimated in an aqueous alkaline medium. These alkaline hydrolysis behaviour was monitored by the high performance liquid chromatography.

  • PDF

Adsorption of Dyes Reactive Blue 221, N Blue RGB and Acid Blue MTR on Two Different Samples of Activated Carbon

  • Kant, Rita;Rattan, V.K.
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.206-210
    • /
    • 2010
  • Removal of dyes Reactive Blue 221, N Blue RGB and Acid Blue MTR using two different samples of activated carbon by static batch method was studied. Experimental data on optical density of solutions at different concentrations ranging from 10 to 100 mg/L and of solutions after adsorption on activated carbon samples were measured. Calibration curves were plotted and the amount of dye $q_e$ adsorbed was calculated. The data was fitted to Langmuir and Freundlich isotherms for two different carbon samples and different concentration and pH values. Constants were calculated from the slope and intercept values of the isotherms. Coefficient of correlation $R_2$ and Standard Deviation SD were also noted. The data fitted well to the isotherms. Carbon sample $C_1$ showed higher potential to adsorb all the three dyes. Adsorption was higher at lower concentrations. Carbon sample $C_2$ showed better adsorption in acidic pH as compared to in alkaline pH. From the analysis of the data capacity of $C_1$ and $C_2$ to remove the dyes from water have been compared.

Reactive-dyeable Treatment of PET Fabrics via Photografting of Dimethylaminopropyl methacrylamide

  • Huang, Weiwei;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.21 no.2
    • /
    • pp.40-47
    • /
    • 2009
  • Dimethylaminopropyl methacryamide was photografted onto PET fabrics by continuous UV irradiation under ambient conditions. Several factors affecting the photografting were studied including irradiation energy, monomer and photoinitiator concentrations. ATR and ESCA analysis showed the successful grafting of the monomer onto the PET surface. The grafted PET fabrics showed higher zeta potentials below pH 7 compared with the ungrafted PET. The dyeability of the grafted PET fabrics to two $\alpha$-bromoacrylamide reactive dyes was investigated under various dyeing conditions including dye concentration, pH, dyeing temperature and time. The grafting imparted the reactive dyeability to PET fabrics, which was proportional to the grafted monomer content. The reactive dyeing behavior of the grafted PET fabrics was similar to that of conventional wool fabrics.

Study on Discharging Agent for Discharge Printing of Fabrics Dyed with Vinylsulfonyl Reactive Dyes ―Discharge Possibility of Some Chemicals― (부가형 반응염료로 염색된 면직물의 발염에 있어 발염제에 관한 연구 -여러가지 약제들에 의한 발염 가능성-)

  • Park, Geon Yong;Ro, Duck Kil
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • In discharge printing of cotton fabrics dyed with C.I. Reactive Orange 16(O-16), C.I. Reactive Blue 19(B-19) and C.I. Reactive Black 5(Bl-5), when the dyes were discharged by some chemicals, such as $K_{2}CO_{3}$, BASB, DSR, sarcosine and GSB, the single use of those chemicals made a very poor discharge, but mixing them with $K_{2}CO_{3}$ resulted to the outstanding improvement of discharge. Especially the dischargeability of $K_{2}CO_{3}$ BASB or $K_{2}CO_{3}$+DSR was very gratifying. For O―16, $K_{2}CO_{3}$+ DSR was slightly more effective than $K_{2}$CO$_{3}$+BASB, but for B―19 and Bl―5 $K_{2}CO_{3}$+BASB and $K_{2}CO_{3}$+DSR showed similar good results. In discharging of O―16 and B―19 by $K_{2}CO_{3}$+BASB or $K_{2}CO_{3}$ +DSR, the dischargeabilities of them increased as the time of 102$^{\circ}C$ steaming increased under the condition of 102$^{\circ}C$ steaming and no baking, but not under the condition of 102$^{\circ}C$ steaming and 16$0^{\circ}C$ baking. However for Bl-5, without regard to baking, the 102$^{\circ}C$ steaming of more than 15 minutes caused the discharge to be much more remarkable than that of 8 minutes did. Generally baking elevated the dischargeability, and this was sure in discharging by $K_{2}CO_{3}$+BASB or $K_{2}CO_{3}$+DSR. And it was confirmed that the structure of vinylsulfonyl reactive dyes could effect on the dischargeability because the three dyes, though little, showed different discharge behaviors.

  • PDF

Capacity of Activated Carbon Derived from Agricultural Waste in the Removal of Reactive Dyes from Aqueous Solutions

  • Manoochehri, Mahboobeh;Rattan, V.K.;Khorsand, Ameneh;Panahi, Homayon Ahmad
    • Carbon letters
    • /
    • v.11 no.3
    • /
    • pp.169-175
    • /
    • 2010
  • The study describes the results of batch experiments on the removal of Reactive Yellow 15 (RY15) and Reactive Black 5 (RB5) from synthetic textile wastewater onto Activated Carbon from Walnut shell (ACW). The experimental data were analyzed by the Langmuir, Freundlish, Temkin and Dubinin-Radushkevich (D-R) models of adsorption. The experiments were carried out as function of initial concentrations, pH, temperature (303-333), adsorbent dose and kinetics. The surface area and pore volumes of adsorbent were measured by BET and BJH methods. The findings confirm the surface area (BET) is 248.99 $m^2/g$. The data fitted well with the Temkin and D-R isotherms for RY15 and RB5, respectively. The most favorable adsorption occurred in acidic pH. Pseudo-second order kinetic model were best in agreement with adsorption of RY15 and RB5 on ACW. The results indicate that walnut shell could be an alternative to more costly adsorbent currently being used for dyes removal.

Utilization of Corynebacterium glutamicum Biomass as a Regenerable Biosorbent for Removal of Reactive Dyes from Aqueous Solution (반응성 염료 제거를 위한 재생 가능한 흡착제로서 Corynebacterium glutamicum 바이오매스의 이용)

  • Won, Sung -Wook;Choi, Sun Beom;Han, Min Hee;Yun, Yeoung-Sang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.542-547
    • /
    • 2005
  • Biosorption is considered to be a promising alternative to replace or supplement the present methods for the treatment of dye-containing wastewater. In this study, the protonated biomass of Corynebacterium glutamicum was evaluated for its potential to remove two types of reactive dyes (Reactive Red 4, Reactive Blue 4) from aqueous solution. The uptakes of dyes were enhanced with decrease in the solution pH, which was likely because the biomass functional groups increased at acidic pH and the positively charged sites could bind the negatively charged sulfonate group ($dye-SO_3^-$) of dye molecules. An equilibrium state was practically achieved in 10 hr. The Langmuir sorption model was used for the mathematical description of the sorption equilibrium. The maximum sorption capacities of C. glutamicum biomass for Reactive Red 4 and Reactive Blue 4 were estimated to 112.36 mg/g and 263.16 mg/g at pH 1, and 71.94 mg/g and 155.88 mg/g at pH 3.