• Title/Summary/Keyword: reaction time

Search Result 6,831, Processing Time 0.035 seconds

Enhancement of the Characteristics of Cement Matrix by the Accelerated Carbonation Reaction of Portlandite with Supercritical Carbon Dioxide

  • Kim, In-Tae;Kim, Hwan-Young;Park, Geun-Il;Yoo, Jae-Hyung;Kim, Joon-Hyung;Seo, Yong-Chil
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.586-591
    • /
    • 2001
  • This research investigated the feasibility of the accelerated carbonation of cement waste forms with carbon dioxide in a supercritical state. Hydraulic cement has been used as a main solidification matrix for the immobilization of radioactive and/or hazardous wastes. As a result of the hydration reaction for major compounds of portland cement, portlandite (Ca(OH)$_2$) is present in the hydrated cement waste form. The chemical durability of a cement form is expected to increase by converting portlandite to the less soluble calcite (CaCO$_3$). For a faster reaction of portlandite with carbon dioxide, SCCD (supercritical carbon dioxide) rather than gaseous $CO_2$, in ambient pressure is used. The cement forms fabricated with an addition of slated lime or Na-bentonite were cured under ambient conditions for 28days and then treated with SCCD in an autoclave maintained at 34$^{\circ}C$ and 80atm. After SCCD treatment, the physicochemical properties of cement matrices were analyzed to evaluate the effectiveness of accelerated carbonation reaction. Conversion of parts of portlandite to calcite by the carbonation reaction with SCCD was verified by XRD (X-ray diffraction) analysis and the composition of portlandite and calcite was estimated using thermogravimetric (TG) data. After SCCD treatment, tile cement density slightly increased by about 1.5% regardless of the SCCD treatment time. The leaching behavior of cement, tested in accordance with an ISO leach test method at 7$0^{\circ}C$ for over 300 days, showed a proportional relationship to the square root of the leaching time, so the major leaching mechanism of cement matrix was diffusion controlled. The cumulative fraction leached (CFL) of calcium decreased by more than 50% after SCCD treatment. It might be concluded that the enhancement of the characteristics of a cement matrix by an accelerated carbonation reaction with SCCD is possible to some extent.

  • PDF

Kinetic Study of Xylan Hydrolysis and Decomposition in Concentrated Sulfuric Acid Hydrolysis Process by $^1H$-NMR Spectroscopy ($^1H$-NMR에 의한 Xylan의 황산가수분해 과정에서 나타나는 반응 동력학 연구)

  • Cho, Dae-Haeng;Kim, Yong-Hwan;Kim, Byung-Ro;Park, Jong-Moon;Sung, Yong-Joo;Shin, Soo-Jeong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetic study of concentrated sulfuric acid hydrolysis reaction, especially focused on 2nd step of acid hydrolysis with deferent reaction time and temperature as main variables. Commercial xylan extracted from beech wood was used as model compound. In concentrated acid hydrolysis, xylan was converted to xylose, which is unstable in 2nd hydrolysis condition, which decomposed to furfural or other reaction products. Without neutralization steps, proton-NMR spectroscopic analysis method was valid for analysis of not only monosaccharide (xylose) but also other reaction products (furfural and formic acid) in acid hydrolyzates from concentrated acid hydrolysis of xylan, which was the main advantages of this analytical method. Higher temperature and longer reaction time at 2nd step acid hydrolysis led to less xylose concentration in xylan acid hydrolyzate, especially at $120^{\circ}C$ and 120 min, which meant hydrolyzed xylose was converted to furfural or other reaction products. Loss of xylose was not match with furfural formation, which meant part of furfural was degraded to other undetected compounds. Formation of formic acid was unexpected from acidic dehydration of pentose, which might come from the glucuronic acid at the side chain of xylan.

Decomposition of Gas-Phase Benzene on TiO2 Coated Alumina Balls by Photocatalytic Reaction (이산화티탄이 코팅된 알루미나 볼에서 광촉매 반응에 의한 기상벤젠의 분해)

  • Lee Nam-Hee;Jung Sang-Chul;Sun Il-Sik;Cho Duk-Ho;Shin Seung-han;Kim Sun-Jae
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.407-412
    • /
    • 2004
  • Photo decomposition of gas phase benzene by $TiO_2$ thin films chemically deposited on alumina balls were investigated under UV irradiation. Photo decomposition rates were measured in real time during the reaction using a photo ionization detector, which ionizes C-H bonding of benzene molecules and then converts into volatile organic compounds (VOCs) concentrations. From the measuring results, the VOCs concentration increased instantly when IN irradiated because C-H bonds of benzene molecules strongly absorbed on the surface of $TiO_2$ films before the IN irradiation was destroyed by photo decomposition. After that, the VOCs concentration decreased with increasing surface area of $TiO_2$ and reaction time under the IN irradiation. At the optimal conditions for the photo decomposition of gas phase benzene, the reaction rate of the photo decomposition for high concentrations (over 60 ppm) was slow but that of relatively low concentration (under 60 ppm) was fast, due to limited surface area of $TiO_2$ thin films for the reaction. Thus, it is concluded that the photo decomposition rate was mainly affected by the surface area of $TiO_2$ or absorption reaction.

Synthesis and analysis CdSe Quantum dot with a Microfluidic Reactor Using a Combinatorial Synthesis System (조합 합성 시스템의 미세유체반응기를 이용한 CdSe 양자점 합성 및 분석)

  • Hong, Myung Hwan;Lee, Duk-Hee;Kang, Lee-Seung;Lee, Chan Gi;Kim, Bum-Sung;Kim, Nam-Hoon
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • A microfluidic reactor with computer-controlled programmable isocratic pumps and online detectors is employed as a combinatorial synthesis system to synthesize and analyze materials for fabricating CdSe quantum dots for various applications. Four reaction condition parameters, namely, the reaction temperature, reaction time, Cd/Se compositional ratio, and precursor concentration, are combined in synthesis condition sets, and the size of the synthesized CdSe quantum dots is determined for each condition. The average time corresponding to each reaction condition for obtaining the ultraviolet-visible absorbance and photoluminescence spectra is approximately 10 min. Using the data from the combinatorial synthesis system, the effects of the reaction conditions on the synthesized CdSe quantum dots are determined. Further, the data is used to determine the relationships between the reaction conditions and the CdSe particle size. This method should aid in determining and selecting the optimal conditions for synthesizing nanoparticles for diverse applications.

Synthesis and analysis CdSe/ZnS quantum dot with a Core/shell Continuous Synthesis System Using a Microfluidic Reactor (미세유체반응기를 이용한 core/shell 연속 합성 시스템을 이용한 CdSe/ZnS 양자점 합성 및 분석)

  • Hong, Myung Hwan;Joo, So Young;Kang, Lee-Seung;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.132-136
    • /
    • 2018
  • Core/shell CdSe/ZnS quantum dots (QDs) are synthesized by a microfluidic reactor-assisted continuous reactor system. Photoluminescence and absorbance of synthesized CdSe/ZnS core/shell QDs are investigated by fluorescence spectrophotometry and online UV-Vis spectrometry. Three reaction conditions, namely; the shell coating reaction temperature, the shell coating reaction time, and the ZnS/CdSe precursor volume ratio, are combined in the synthesis process. The quantum yield of the synthesized CdSe QDs is determined for each condition. CdSe/ZnS QDs with a higher quantum yield are obtained compared to the discontinuous microfluidic reactor synthesis system. The maximum quantum efficiency is 98.3% when the reaction temperature, reaction time, and ZnS/CdSe ratio are $270^{\circ}C$, 10 s, and 0.05, respectively. Obtained results indicate that a continuous synthesis of the Core/shell CdSe/ZnS QDs with a high quantum efficiency could be achieved by isolating the reaction from the external environment.

A Study on Optimum Conditions Derivation on Thermal Hydrolysis of Food Wastewater and the Applicability of the Thermal Solubilization in Biological Denitrification Process (음폐수의 열가수분해 최적조건 도출과 생물학적 탈질공정에서 열가용화액의 적용 가능성에 관한 연구)

  • Lee, Ki Hee;You, Hee Gu;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.151-158
    • /
    • 2015
  • The aim of this research is to derive an optimum operating condition for the thermal solubilization equipment that is employed to increase concentration of soluble organic materials and to assess whether it would be possible to use the waste sludge generated by thermal solubilization reaction as an external carbon source in biological denitrification process. For the purpose, we have constituted a laboratory-size thermal solubilization equipment and have assessed thermal hydrolysis efficiency based on various reaction temperature and reaction time. We have also derived SDNR using the waste sludge generated by thermal solubilization reaction through a batch experiment. As a result of research, the highest thermal hydrolysis efficiency of about 42.8% was achieved at $190^{\circ}C$ of reaction temperature and at 90 minutes of reaction time. And when SDNR was derived using the waste sludge, the value obtained was $0.080{\sim}0.094\;g\;NO_3{^-}-N/g\;MLVSS{\cdot}day$, showing SDNR that is higher than that obtained by the results of existing researches that used common wastewater as an external carbon source. Accordingly, in view of the fact that food wastes vary quite a bit in characteristics based on the area they are generated from and seasonal change, it seems that a flexible operation of thermal solubilization equipment is required through on-going monitoring of food wastes that are imported to food wastes recycling facilities.

Chemical Treatment of the PCBs-laden Transformer Insulation Oil (PCBs 함유 변압기 절연유의 화학적처리)

  • Ryoo, Keon-Sang;Choi, Jong-Ha;Choi, Jin-Whan
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1499-1507
    • /
    • 2011
  • Practical disposal of transformer insulation oil laden with PCBs (polychlorinated biphenyls) by a chemical treatment has been studied in field work. The transformer insulation oil containing PCBs was treated by the required amounts of PEG (polyethylene glycol) and KOH, along with different reaction conditions such as temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. Removal efficiencies of PCBs in insulation oil before and after chemical treatment were examined. The removal efficiency of PCBs was very low at lower temperatures of 25 and $50^{\circ}C$. Under the reaction condition of PEG 600/KOH/$100^{\circ}C$/2hr, removal efficiency of PCBs was approximately 70%, showing completely removal of PCBs containing 7~9 chlorines on biphenyl frame which appear later than PCB IUPAC Number 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to $150^{\circ}C$ and 4 hours, removal efficiency of PCBs reached 99.99% without any formation of PCDDS/PCDFs during the process. Such reaction conditions were verified by several official analytical institutions. In studying the reaction of PEG with PCBs, it confirmed that the process of chemical treatment led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines.

Electrical Properties and Characterization of 3-Methylthiophene Impregnated Polyurethane films (3-Methylthiophene이 함유된 폴리우레탄 필름의 전기적 특성 연구)

  • Choi, Sei-Young;Choi, Kyo-Chang;Lee, Eun-Kyoung
    • Elastomers and Composites
    • /
    • v.39 no.3
    • /
    • pp.234-243
    • /
    • 2004
  • The elastomeric and conductive polyurethane (PU) films were prepared by poly(propylene glycol) (PPG), toluene 2,4-diisocyanate, 3-methylthiophene (3-MT) at various preparation conditions, such as the reaction time, the $FeCl_3$ concentration, the weight ratio of the 3-MT to PU and the reaction temperature for the diffusion-oxidative reaction. The conductive poly (3-methylthiophene) (PMT) layers via the diffusion-oxidative reaction of 3-MT and ferric chloride were formed by immersing the film in organic solution of $FeCl_3$/ethyl acetate. The preparation conditions greatly affected the electrical conductivity of the 3-MT/PU composite. The effects of the reaction time and temperature on morphology and surface free energy were investigated by scanning electron microscopy (SEM) analysis and contact angle measurement, respectively. The conductivity of the composite was as high as 42 S/cm.

The Effects of Driving Rehabilitation Functional Training on Visual Perception and Driving Reaction Velocity (운전시뮬레이터 훈련이 시 지각 및 운전 반응 속도에 미치는 효과)

  • Lee, Jungsook;Kim, Sungwon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.5 no.4
    • /
    • pp.77-81
    • /
    • 2017
  • Purpose : This study examined the effects of driving rehabilitation functional training on visual perception ability and driving reaction velocity. Those subjects were put under MVPT-3 test to see their visual perceptual functions before and after the 4weeks' driving rehabilitation function training and then put to TMT A-type test to see their driving reaction velocity performance. The followings are the results of this study. Methods : Using a driving simulator, driving rehabilitation functional training was performed targeting men and women aged in 20s 20 minutes per time, two times per week, for a month. Results : As for the change in visual perception, the Raw Score of MVPT-3 very significantly increased (p<.01), and the Standard Score also very significantly increased (p<.01). As for the change in reaction velocity, TMT A-type very significantly decreased (p<.01), and TMT B-type also very significantly decreased (p<.01). Conclusion : It could be found that driving rehabilitation functional training should be effective for both visual perception and reaction velocity. Consequently, the driving rehabilitation function training can be applied to clinics as training method for functional recovery and improvement of visual perceptual functions and driving reaction velocity performance ability of the patients. Thus, various functional programs should be studied in the future.

Facile Synthesis of Vertically Aligned CdTe-Si Nanostructures with High Density (수직배양된 고집적 CdTe-Si 나노구조체의 제조방법)

  • Im, Jinho;Hwang, Sung-hwan;Jung, Hyunsung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.3
    • /
    • pp.185-191
    • /
    • 2017
  • Cadmium compounds with one dimension (1D) nanostructures have attracted attention for their excellent electrical and optical properties. In this study, vertically aligned CdTe-Si nanostructures with high density were synthesized by several simple chemical reactions. First, l D Te nanostructures were synthesized by silver assisted chemical Si wafer etching followed by a galvanic displacement reaction of the etched Si nanowires. Nanowire length was controlled from 1 to $25{\mu}m$ by adjusting etching time. The Si nanowire galvanic displacement reaction in $HTeO_2{^+}$ electrolyte created hybrid 1D Te-branched Si nanostructures. The sequential topochemical reaction resulted in $Ag_2Te-Si$ nanostructures, and the cation exchange reaction with the hybrid 1D Te-branched Si nanostructures resulted in CdTe-Si nanostructures. Wet chemical processes including metal assisted etching, galvanic displacement, topochemical and cation exchange reactions are proposed as simple routes to fabricate large scale, vertically aligned CdTe-Si hybrid nanostructures with high density.