• Title/Summary/Keyword: reaction surface method

Search Result 1,044, Processing Time 0.027 seconds

Optimization of Biodiesel Production from Waste Frying Oil using Response Surface Method (Response Surface Method를 이용한 폐식용유로부터 바이오디젤 생산의 최적화)

  • 이세진;김의용
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.396-402
    • /
    • 2002
  • Biodiesel has attracted considerable attention during the past decade as a biodegradable, nontoxic, and renewable fuel, Several processes for the production of biodiesel have been developed, among which transesterification under alkali-catalysis gives high level yield of methyl esters in short reaction times. In this research, response surface method was applied to optimize the transesterification reaction under alkali-catalysis. It was found that reaction temperature, reaction time, and agitation rate of reactor had profound effects among the seven variables affecting on biodiesel conversion. The optimal temperature, reaction time, and agitation speed were 67$^{\circ}C$, 68 minutes, and 94 rpm, respectively. Under the optimal conditions, the experimental value of biodiesel conversion was 99.7%.

A Study on the Surface Treatment of Spectra Fibers Using an ion Assisted Reaction Method (이온도움 반응법을 이용한 스펙트라 섬유의 표면처리에 대한 연구)

  • 이경엽;신동혁;지창헌
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.319-324
    • /
    • 2002
  • It is known that ion-assisted reaction method is effective for the surface modification of polymers. The surface treatment of Spectra fibers using the ion-assisted reaction method was investigated in the present study The Spectra fibers were treated by $Ar^{+}$ / ion irradiation under oxygen environment. The treatment was carried out at different $Ar^{+}$ ion doses. The$ Ar^{+ }$ /ion doses used were $6$\times$10^{15}$ , $1$\times$10^{16}$ , $5$\times$10^{16}$ , $1$\times$10^{17}$ / ions/$\m^2$. Optimal $Ar^{+}$ ion dose in the treatment of Spectra fibers was determined by measuring the tensile strength and modulus of Spectra/vinylester composites as a function of ion dose. It was found that the optimal ion dose was $1$\times$10^{16}$ions/$\m^2$. It was also found from the scanning electron microscope examination that the surface-treatment improved adhesion between fibers and vinylester resin.

Kinetics and Optimization of Dimethyl Carbonate Synthesis by Transesterification using Design of Experiment

  • Lee, Kilwoo;Yoo, Kye Sang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.416-420
    • /
    • 2018
  • A comprehensive kinetic study has been conducted on dimethyl carbonate synthesis by transesterification reaction of ethylene carbonate with methanol. An alkali base metal (KOH) was used as catalyst in the synthesis of DMC, and its catalytic ability was investigated in terms of kinetics. The experiment was performed in a batch reactor at atmospheric pressure. The reaction orders, the activation energy and the rate constants were determined for both forward and backward reactions. The reaction order for forward and backward reactions was 0.87 and 2.15, and the activation energy was 12.73 and 29.28 kJ/mol, respectively. Using the general factor analysis in the design of experiments, we analyzed the main effects and interactions according to the MeOH/EC, reaction temperature and KOH concentration. DMC yield with various reaction conditions was presented for all ranges using surface and contour plot. Furthermore, the optimal conditions for DMC yield were determined using response surface method.

On Crystallization of Hadong Kaolin Granulated Cylindrically Treated with Aqueous Sodium Hydroxide Solution (원주형으로 성형된 하동고령토의 수산화나트륨 수용액 처리에 의한 결정의 변화)

  • 김면섭
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 1978
  • Hadong Kaolin (Halloysite) was granulated cylindrically and treated with 1N aqueous sodium hydroxide solution for 6-48 hrs at 60-10$0^{\circ}C$. The crystalling structure of surface of the products was studied by X-ray powder diffraction method. The reaction rate of halloysite to sodium A zeolite showed a gradual decrease from surface to inner layer. At the surface layer, the reaction mechanism was observed as first order consecutive reaction as follows: halloysitelongrightarrowamorphous aluminosilicatelongrightarrowsodium A zeolitelongrightarrowhydroxysodalite By applying the above reaction mechanism, the rate constants and activation energies was measured.

  • PDF

A Study on the CFRP Treatment by ion Assisted Reaction Method to Improve T-peel Strength of CFRP/Aluminum Composites (CFRP/알루미늄 복합재에서 이온도움반응법을 적용한 CFRP의 표면처리가 T-peel 강도에 미치는 영향에 대한 연구)

  • Lee, Gyeong-Yeop;Yang, Jun-Ho;Yun, Chang-Seon;Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.570-575
    • /
    • 2002
  • It is well-known that the bond strength between CFRP(Carbon Fiber Reinforced Plastic) and aluminum is significantly affected by the surface treatment of the CFRP and the aluminum. This study investigates the surface treatment of CFRP to improve the T-peel strength of CFRP/aluminum composites. The surface of %CFRP([0^0]_{14})$ was treated by the ion assisted reaction method under oxygen environment. T-peel strength tests were performed based on the procedure of ASTM D1876-95. The T-peel strength of surface-treated CFRP/aluminum composites was compared with that of untreated CFRP/aluminum composites. The results showed that the T-peel strength of surface-treated CFRP/aluminum composites was about 5.5 times higher than that of untreated CFRP/aluminum composites. SEM examination showed that the improvement of T-peel strength was attributed to the uniform spread and fracture of epoxy adhesive.

A Study on the Improvement of Decomposition Efficiency of Organic Substances Using Plasma Process and Catalytic Surface Chemical Reaction (플라즈마 프로세스 및 촉매 표면화학반응에 의한 유기화합물 분해효율 향상에 대한 연구)

  • Han, Sang-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.932-938
    • /
    • 2010
  • This paper proposed the effective treatment method for organic substances using the barrier discharge plasma process and catalytic chemical reaction followed from ozone decomposition. The decomposition by the plasma process of organic substances such as trichloroethylene, methyl alcohol, acetone, and dichloromethane carried out, and ozone is generated effectively at the same time. By passing through catalysts, ozone easily decomposed and further decomposed organic substances. And, 2-dimensional distribution of ozone using the optical measurement method is performed to identify the catalytic surface chemical reaction. In addition, CO is easily oxidized into $CO_2$ by this chemical reaction, which might be induced oxygen atom radicals formed at the surface of catalyst from ozone decomposition.

Chemical Reaction between Aluminium and graphite Crucible During the Fabrication of Spherical Monosized Al particles

  • Kwon, Hansang
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.99-103
    • /
    • 2018
  • Spherical monosized pure aluminum (Al) particles are successfully fabricated by the pulsated orifice ejection method (POEM). The surface reaction between Al and the graphite crucible is investigated by analysing the microstructure and chemical composition of the materials. No significant chemical reaction occurs between Al and the graphite owing to the crystalline Al oxide (${\gamma}-Al_2O_3$) layer generated in the initial state. The ${\gamma}-Al_2O_3$ layer is clearly observed in all regions between the Al particles and graphite via transmission electron microscopy and confirmed by the selected area diffraction pattern. The morphology of the ${\gamma}-Al_2O_3$ layer perfectly follows the surface morphology of the graphite crucible, which showed nanoscale roughness. This implies that molten Al could not directly contact graphite even though the surface of the crucible became rough to some extent. However, this passivation phenomenon allowed the successful fabrication of monosized pure Al particles. Therefore, POEM is a useful process at least to manufacture monosized pure Al particles.

Adsorption and Chemical Reaction of Cu(hfac)(vtms) on Clean and Modified Cu(111) Surface

  • Chung, Young-Su;Kim, Sehun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.139-139
    • /
    • 2000
  • We have investigated the adsorption and reaction of Cu(hfac)(vtms) on Cu(111) surface using TPD. The recombinative desorption of Cu(hfac)(vtms) reversibly occurs between 240 and 340K. The remaining Cu(hfac) after the desorption of vtms preferentially undergo the desorption between 330 and 370K as intact Cu(hfac) than the disproportionation reaction. The disprportionation reaction between adsorbed Cu(hfac) was observed to occur between 420 and 520K with an activation energy of 34~37 kcal/mol. the geometries and adsorption sites of Cu(hfac) have been also calculated by means of extended H ckel method. It is found that standing Cu(hfac) is more stable than lying-down Cu(hfac) on the Cu(111) surface and the Cu(hfac) molecule prefers to adsorb on the hollow site over the top or bridge sites. We also have investigated the surface modification effect by preadsorbed I and Na atoms on the reaction Cu(hfac)(vtms).

  • PDF

Effects of pH on Preparation of Au-Coated $TiO_2$ Nanoparticles by Deposition-Precipitation Method

  • Nguyen, Dung The;Kim, Dong-Joo;Kim, Kyo-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.150-150
    • /
    • 2009
  • We prepared the Au-coated $TiO_2$ (Au/$TiO_2$) nanoparticles by deposition-precipitation (DP) method with and without bases (urea or NaOH) and investigated the effects of pH on the preparation of Au/$TiO_2$ nanoparticles for various kinds of bases. For the DP method without bases, the Au nanoparticles in the diameter of about 50 nm were generated in the solution by the reduction reaction with trisodium citrate and they did not deposit on the surface of $TiO_2$. For the DP method with bases, Au precursors deposited on the surface of $TiO_2$ and then reduced to the Au nanoparticles in the diameter of 4-5 nm on the surface of $TiO_2$ by the reaction with trisodium citrate.

  • PDF

Effects of Cooling Method Followed by Casting on the Interfacial and Mechanical Properties of Dental CP-Ti Casts (치과용 티타늄 주조체의 냉각방법이 표면반응층 및 기계적 특성에 미치는 영향)

  • Moon, Soo;Jung, Jun-Young;Kim, Ki-Ju;Lee, Jin-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.375-380
    • /
    • 2003
  • In this study. we have intended to control the properties of surface reaction zone generated between pure titanium and oxide investment moulds. Commercially pure titanium was centrifugally casted and silica$.$alumina based phosphate bonded investment was used as the mould material. The effect of cooling methods after casting on the surface reaction zone and mechanical properties of casts were investigated. The resulting casts showed the multilayered surface reaction zone regardless of cooling method. Especially. water cooling method produced the titanium casts with thinner surface reaction zone. weaker strength. and higher elongation properties compared to air cooling. It can thus be known that the resulting casts had satisfactory mechanical properties as dental materials. From these results, the cooling rate dependence of interfacial and mechanical properties can be attributed to the diffusion of oxygen from casting environment, which control the reaction of titanium and mould.