• 제목/요약/키워드: reaction pathway

검색결과 544건 처리시간 0.022초

Theoretical Study on the Mechanism of the Addition Reaction between Cyclopropenylidene and Formaldehyde

  • Tan, Xiaojun;Li, Zhen;Sun, Qiao;Li, Ping;Wang, Weihua
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1934-1938
    • /
    • 2012
  • The reaction mechanism between cyclopropenylidene and formaldehyde has been systematically investigated employing the MP2/6-311+$G^*$ level of theory to better understand the cyclopropenylidene reactivity with carbonyl compound. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Energies of all the species are further corrected by the CCSD(T)/6-311+$G^*$ single-point calculations. It was found that one important reaction intermediate (INTa) has been located firstly $via$ a transition state (TSa). After that, the common intermediate (INTb) for the two pathways (1) and (2) has been formed $via$ TSb. At last, two different products possessing three- and four-membered ring characters have been obtained through two possible reaction pathways. In the reaction pathway (1), a three-membered ring alkyne compound has been obtained. As for the reaction pathway (2), it is the formation of the four-membered ring conjugated diene compound. The energy barrier of the ratedetermining step of pathway (1) is lower than that of the pathway (2), and the ultima product of pathway (2) is more stable than that of the pathway (1).

Single Electron Transfer (SET) Pathway: Nucleophilic Substitution Reaction of 4-Chloro-7-nitrobenzofurazan with Anilines in MeOH-MeCN Mixtures

  • Choi, Ho-June;Yang, Ki-Yull;Lee, Sang-Gyeong;Lee, Jong-Pal;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2801-2805
    • /
    • 2010
  • A nucleophilic substitution reaction of 4-chloro-7-nitrobenzofurazan (NBF-Cl) with anilines in MeOH-MeCN mixtures was conducted at 25, 35, and $45^{\circ}C$. Based on the higher $\beta_{nuc}$ values (1.0 - 1.6) of the reaction and a good correlation of the rate constants with the reduction potentials of the aniline nucleophiles, the present reaction was initiated by a single electron transfer (SET). After this step, the reaction proceeds through a transition state similar to the normal $S_NAr$-Ad.E pathway.

Mapping Between Models for Pathway Dynamics and Structural Representations of Biological Pathways

  • Yavas, Gokhan;Ozsoyoglu, Z. Meral
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.415-420
    • /
    • 2005
  • Mathematical modeling and simulation of biochemical reaction networks gained a lot of attention recently since it can provide valuable insights into the interrelationships and interactions of genes, proteins and metabolites in a reaction network. A number of attempts have been made for modeling and storing biochemical reaction networks without their dynamical properties but unfortunately storing and efficiently querying of the dynamic (mathematical) models are not yet studied extensively. In this paper, we present a novel nested relational data schema to store a pathway with its dynamic properties. We then show how to make the mapping between this dynamic pathway schema with the corresponding static pathway representation.

  • PDF

범밀도함수이론에 기초한 니켈(100) 표면에서의 전기화학적 질소환원반응 메커니즘에 관한 연구 (A Density-Functional Theory Study on Mechanisms of the Electrochemical Nitrogen Reduction Reaction on the Nickel(100) Surface)

  • 김민지;이상헌
    • Korean Chemical Engineering Research
    • /
    • 제61권4호
    • /
    • pp.604-610
    • /
    • 2023
  • 주변 조건에서 N2를 환원하여 NH3를 생성하는 전기 촉매 질소 환원 반응(nitrogen reduction reaction, NRR)은 산업공정에서 에너지 소비를 감소시킬 수 있는 유망한 기술로 주목을 받고 있다. N2를 흡착하고 활성화할 수 있는 촉매 금속 표면 중 많이 사용되는 Ni(100) 표면의 여러 사이트(site)의 흡착 성능을 밀도 함수 이론 계산(density-functional theory)를 기반으로 비교하였다. 또한 안정적인 NRR반응의 경로를 유도하는 N2의 두 가지 흡착 구조를 조사하였고 end-on 구조는 top site에 흡착, distal pathway로 반응이 진행되고 side-on 구조는 bridge site에 흡착되며 enzymatic pathway로 반응이 진행되었다. 마지막으로 구조 별 가장 안정한 메커니즘의 깁스 자유에너지를 구하여 반응의 경향성을 알아봄으로써 NRR 반응의 금속 촉매 표면 흡착에 대한 연구에 도움이 될 수 있을 것이다.

Theoretical Study on the Reaction Mechanism of Azacyclopropenylidene with Epoxypropane: An Insertion Process

  • Tan, Xiaojun;Wang, Weihua;Li, Ping
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2717-2722
    • /
    • 2014
  • The reaction mechanism between azacyclopropenylidene and epoxypropane has been systematically investigated employing the second-order M${\o}$ller-Plesset perturbation theory (MP2) method to better understand the reactivity of azacyclopropenylidene with four-membered ring compound epoxypropane. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. It was found that for the first step of this reaction, azacyclopropenylidene can insert into epoxypropane at its C-O or C-C bond to form spiro intermediate IM. It is easier for the azacyclopropenylidene to insert into the C-O bond than the C-C bond. Through the ring-opened step at the C-C bond of azacyclopropenylidene fragment, IM can transfer to product P1, which is named as pathway (1). On the other hand, through the H-transferred step and subsequent ring-opened step at the C-N bond of azacyclopropenylidene fragment, IM can convert to product P2, which is named as pathway (2). From the thermodynamics viewpoint, the P2 characterized by an allene is the dominating product. From the kinetic viewpoint, the pathway (1) of formation to P1 is primary.

비전통핵생성 이론 관점에서 탄산칼슘의 반응경로에 대한 시간분해 분극 및 탈분극 추적 (Time-resolved polarization and depolarization tracking on reaction pathway of calcium carbonates in a view of non-classical nucleation theory)

  • 김광목
    • 도시과학
    • /
    • 제9권2호
    • /
    • pp.45-50
    • /
    • 2020
  • The formation characteristics of calcium carbonates are closely related to the durability and mechanical properties of cement-based materials. In this regard, a deep understanding of the reaction pathway of calcium carbonates is critical. Recently, non-classical nucleation theory was summarized and it was presumed that prenucleation clusters are present. The formation of the prenucleation cluster at undersaturated condition (≈ 0.1 ml) in the present study was investigated via electrical characteristics of an electrolytic solution. Calcium chloride dihydrate (CaCl2·2H2O) and sodium carbonate (Na2CO3) were used as starting materials to supply calcium and carbonate sources, respectively. Furthermore, the reaction pathway of calcium carbonates was investigated by time-resolved polarization and depolarization characteristics of the electrolytic solution. The time-resolved polarization and depolarization tests were conducted by switching polarity with an interval of 20 seconds for 1 hr and by measuring the variation of electrical resistance. It can be inferred from the results obtained in the present study that the reactive constituent for the formation of calcium carbonates was mostly consumed in the period possibly associated with the prenucleation and the reaction pathways may be governed by the monomer-addition mechanism.

Degradation of Polyvinyl Alcohol by Brevibacillus laterosporus: metabolic Pathway of Polyvinyl Alcohol to Acetate

  • Lim, Joong-Gyu;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.928-933
    • /
    • 2001
  • Approximately 0.1 mg/ml of polyvinyl alcohol (PVA) was degraded by the growing cell, Brevibacillus laterospours, for 30 h, and 0.2 mg/ml of PVA was degraded by the cell-free extract that was isolated from Brevibacillus laterosporus. Approximately $0.29{\mu}g$/ml of acetic acid was produced from PVA by using the cell-free extract as a catalyst for 40 min. $V_{max}\;and\;K_m$ value of purified PAV-degradation enzyme was 3.75g/l and 2.75 g/l/min in reaction with EDTA and 3.99 g/l and 2.98 g/l/min in reaction without EDTA, respectively. Molecular weight of the purified enzyme determined by SDS-PAGE was 63,000 Da. Alcohol dehydrogenase and aldehyde dehydrogenase activities were qualitatively detected on a native acrylamide gel by an active staining method, indicating the existence of the metabolic pathway to use PVA as a substrate.

  • PDF

TiO$_2$를 이용한 메틸메르캅탄의 광촉매 분해메커니즘 (Photocatalytic Degradation Mechanism of Methyl Mercaptan using $TiO_2$)

  • 이병대;이진식;김영찬
    • 한국응용과학기술학회지
    • /
    • 제24권3호
    • /
    • pp.296-300
    • /
    • 2007
  • This paper presents applicability of photocatalytic decomposition of methyl mercaptan using $TiO_2$. A quartz reactor was used in order to elucidate reaction pathway in photocatalytic decomposition of methyl mercaptan. Experimental results showed that more than 99.9% of methyl mercaptan was decomposed within 30 minutes. It was found that the photocatalytic decomposition of methyl mercaptan followed pseudo first order and its reaction coefficient was $0.05min^{-1}$ During 30 minutes in the photocatalytic reaction, the concentration of methyl mercaptan, dimethyl disulfide, $SO_2$, $H_2SO_4$, COS, $H_2S$ were determined. These results showed that 64% of methyl mercaptan were compensated for the increase in sulfur after 30 minutes through the mineralization. The proposed main photocatalytic decomposition pathway of methyl mercaptan was methyl $mercaptan{\rightarrow}dimethyl$ $disulfide{\rightarrow}SO_2{\rightarrow}H_2SO_4$.

다고리 방향족 탄화수소의 반응 경로에 대한 DFT 연구 I: 2개의 OH 라디칼에 의한 페난트렌의 분해 반응 (A DFT Study for the Reaction Pathway(s) of Polycyclic Aromatic Hydrocarbons I: Phenanthrene Degradation with two OH Radicals)

  • 이민주;이병대
    • 대한화학회지
    • /
    • 제65권1호
    • /
    • pp.9-14
    • /
    • 2021
  • 이 연구에서는 1기압 298 K 기체 상태에서 페난트렌에 두 개의 OH 라디칼이 연쇄적으로 작용하여 페난트렌이 분해되는 반응 과정을 B3LYP/6-31G(d,p) 기저함수를 사용하여 DFT 계산을 수행하였다. 계산 결과 두 개의 OH 라디칼이 연쇄적으로 페난트렌에 작용하는 경우에도 phenanthren-9-ol 생성 반응이 phenanthren-1-ol 생성 반응보다 유리할 것으로 예측된다. 한편 OH 첨가와 H 추출 과정에 대한 우선성은 상온에서 OH 첨가 과정이 유리할 것으로 예측되었다.

Polyhydroxyamic Acid from 3,3′ - Dihydroxybenzidine and Pyromellitic Dianhydride as a Fire-safe Polymer

  • Park, Seung Koo;Farris, Richard J.;Kantor, Simon W.
    • Fibers and Polymers
    • /
    • 제5권2호
    • /
    • pp.83-88
    • /
    • 2004
  • In order to assess the potential of the hydroxy-containing polyamic acid (PHAA) synthesized from 3,3'-dihydroxy benzidine and pyromellitic dianhydride for a fire-safe polymer, the cyclization pathway of PHAA has been investigated using a model compound prepared from 2-aminophenol and phthalic anhydride. The reaction was monitored. by $^1{H-nuclear}$ magnetic resonance. N-(2-hydroxyphenyl) phthalamic acid is converted to N-(2-hydroxyphenyl) phthalimide at ca. 175$^{\circ}C$, showing endothermic reaction. The imide structure is rearranged to the benzoxazole structure over ca. $400^{\circ}C$. These results are similar with that of PHAA. According to pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) data, water and carbon dioxide are released during the cyclization and rearrangement reaction. One DMAc molecule is complexed with one carboxyl acid group in PHAA, which accelerates the imidization process to release more easily the flame retardant, water.