• Title/Summary/Keyword: reaction pH

Search Result 3,839, Processing Time 0.034 seconds

Determination of Optimum pH of Enzyme by Electrochemical Method (전기화학적 방법에 의한 효소의 최적 pH 결정)

  • Yoon, Kil-Joong;Lee, Beom-Gyu;Kwon, Hyo-Shik
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • A biosensor for the determination of hydrogen peroxide was constructed by immobilizing of porcine small instestinal tissue in a plain carbon paste, and the effect of varying the $H_2O_2$ concentration and pH on the rate of catalytic reaction was evaluated. For the mathematical simplicity, no mediator was added. Electrochemical properties and the maximal rate could be derived from the quantitative analysis of the observed phenomena related to the electrode reaction. Also, pH dependence of the Michaelis constant enabled to calculate various thermodynamic parameters and subsequently to design a electrochemical method to determine the optimum pH of enzyme.

  • PDF

Stability of Minoxidil in Aqueous Solution (수용액중 미녹시딜의 안정성)

  • 김길수
    • YAKHAK HOEJI
    • /
    • v.30 no.5
    • /
    • pp.228-231
    • /
    • 1986
  • The effect of temperature and pH on the degrdation of minoxidil in the aqueous solution was investigated and the stability of pharmaceutical preparation for solution was also studied. The degradation of minoxidil in the aqueous solution was first order type reaction and the rate constant at $20^{\circ}C$ in pH 7.0 phosphate buffer solution was 9.464${\times]10^{-3} day^{-1}$ and calculated activation energy was 11.7 kcal/mol. The degradation of minoxidil was acid-base catalytic reaction and the most stable range of pH was about 5.0. The liquid pharmaceutical preparation was very stable in 3 months.

  • PDF

Formation of Nitrosamines from Sodium Nitroprusside and Physiological Amines

  • Park, Jeen-Woo
    • Archives of Pharmacal Research
    • /
    • v.12 no.4
    • /
    • pp.239-242
    • /
    • 1989
  • Several physiological components containing a secondary amino group were capable of reacting sodium nitroprusside to form potentially carcinogenic nitrosamines under physiological conditions (pH 7.3, 37). In each case the products were identical to those produced upon reaction with nitrous acid at much lower pH values. Reaction rates measured with proline were shown to reflect a first order dependence on both amine and nitroprusside concentrations. The strong influences of pH on the reactions of sodium nitro prusside with amines were also observed. These results show sodium nitroprusside could be a very potent nitrosation agent under physiological conditions.

  • PDF

Optimum pH Condition of Defatted Rice Protein Extraction by Alkaline Method (알칼리 추출법에 의한 탈지 미강 단백질 추출의 최적 pH 조건)

  • Kim, Won;Jung, So-Young;Hong, Kwang-Won
    • Food Engineering Progress
    • /
    • v.15 no.2
    • /
    • pp.143-147
    • /
    • 2011
  • For efficient extraction of protein from defatted rice bran, the 5 ranges of extraction pH (8, 9, 10, 11 and 12) and the 3 ranges of isoelectric precipitation pH (2, 4 and 6) were used. The protein content, browning reaction, the electrophoresis pattern and the recovery yield of soluble protein at each pH range were compared each other. The recovery yield of soluble protein increased in proportion to extraction pH, but at the same time, browning reaction became more conspicuous. The most amount of protein was recovered at the precipitation pH of 4. The SDS-PAGE patterns of the extracted proteins showed no significant correlations between pH and the protein content, but the highly alkaline condition was more advantageous to extract protein less than 35 kDa. In each pH range, the recovery yield of soluble protein averagely reached 32.5% on the basis of extraction. In result, it was found that combination of extraction pH 10 and precipitation pH 4, which resulted in 37.65% of recovery yield and low level of browning reaction, was the optimum condition for the extraction of protein from defatted rice bran.

Investigation of Stereo-dynamic Properties for the Reaction H+HLi by Quasi-classical Trajectory Approach

  • Wang, Yuliang;Zhang, Jinchun;Jiang, Yanlan;Wang, Kun;Zhou, Mingyu;Liang, Xiaorui
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2873-2877
    • /
    • 2012
  • Quasi-classical trajectory (QCT) calculations of H+HLi reaction have been carried out on a new potential energy surface of the ground state reported by Prudente et al. [Chem. Phys. Lett. 2009, 474, 18]. The four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame at various collision energies. The reaction probability for the depletion channel has been studied over a wide collision energy range. It has been found that the collision energy decreases remarkably reaction probability, which shows the expected behavior of the title reaction belonging to an exothermic barrierless reaction. The results are in good agreement with previous RMP results. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r,\;{\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. The average rotational alignment factor <$P_2(j{\prime}{\cdot}k)$> as a function of collision energy is also calculated. The results indicate that the collision energy has a great influence on the polarization of the product rotational angular momentum vector j'.

The Effect of pH on the Antioxidative Activity of Melanoidins Formed from Glucose and Fructose with L and D-Asparagine in the Maillard Reaction

  • Kim, Ji-Sang;Lee, Young-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.3
    • /
    • pp.182-189
    • /
    • 2008
  • In this study, the effect of pH on the antioxidative activities of melanoidins formed as a result of the reaction between sugars, glucose (Glc) or fructose (Fru), and amino acids, L-asparagine (L-Asn) and D-asparagine (D-Asn) are examined. For this purpose, antioxidative activities were evaluated on the basis of reducing power, including ferric reducing/antioxidant power (FRAP) and free radical scavenging activity includes 1,1-diphenyl-2-picryl- hydrazil (DPPH) and 2,2'-azinobis(3-ethylbenothiazoline-6-sulfonic acid) diammonium salt (ABTS) and ferrous ion chelating activity. Ethylene diamine tetraacetate (EDTA) and trolox, a water-soluble analog of tocopherol, were used as reference antioxidant compounds. The antioxidative activities of the melanoidins at a pH of 7.0 were greater than those with a pHs of 4.0 and pH 10.0. Especially, it was found that the melanoidins formed from D-isomers are more effective antioxidants in different in vitro assays. The reducing power and chelating activity of the melanoidins formed from the Fru systems were higher than those of the melanoidins formed from the Glc systems. However, the ABTS radical scavenging activity of the melanoidins formed from the Glc systems were higher than those of the melanoidins formed from the Fru systems. In particular, the DPPH radical scavenging activity and the FRAP of the melanoidins showed different antioxidative activities according to pH level.

A Study on the Production of VFAs from Sewage Sludge by Fenton's Oxidation (펜톤 산화에 의한 하수 슬러지로부터 유기산 생성에 관한 연구)

  • Han, Kum-Seok;Nam, Young-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.2
    • /
    • pp.184-190
    • /
    • 2005
  • A new VFAs production process from sewage sludge using Fenton's oxidation was investigated. Optimum concentrations of $H_2O_\;and\;Fe^{2+}$ as well as optimum reaction temperature for VFAs production were studied. In the presence of $Fe^{2+}$ as catalyst, the VFAs formation rate increased about 4 times compared to $H_2O_2$ oxidation process without $Fe^{2+}$. Optimum concentrations of $H_2O_2$ and $Fe^{2+}$ were 0.62 M and 0.007 M, respectively. VFAs formation reaction proceeded rapidly within 1 min and VFAs formed degraded partly to acetic acid and $CO_2$, which exhibited series reaction characteristics. Based on the economic aspect, reaction temperature of $25^{\circ}C$ and 10 min of reaction time were thought to be proper reaction conditions. The effect of initial pH in the range of $3{\sim}6.3$ on the VFAs formation was not observed.

Kinetics and Mechanism of the Hydrolysis of Imidoyl Halides (Imidoyl Halide의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Tae-Rin Kim;Jin-Hee Kim;Byung-Doo Chang;Kwang-Il Lee;Ung-Cho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.48-55
    • /
    • 1976
  • The rate constants of the derivatives of N-(2,4-dinitrophenyl)-benzimidoyl chloride were determined at various pH and a rate equation which can be applied over wide pH range was obtained. The reaction mechanism of hydrolysis of N-(2,4-dinitrophenyl)-benzimidoyl chloride which has not been studied carefully earlier in acidic and basic solution can be fullly explained by the rate equation obtained. The rate equation reveals that, beow pH 7.00, the hydrolysis of benzimidoyl chloride proceeds through $S_N2$ reaction to form a carbonium ion intermediate.Above pH 8.5, however, the hydrolysis proceeds through the $S_N2$ type reaction which depends on hydroxide ion and imidoyl chloride concentration. At pH 7.0∼8.5, two reactions occur competitively.

  • PDF

Kinetic Studies on the Addition of Potassium Cyanide to α,N-Diphenylnitrone

  • 김태린;김영호;변상용
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.6
    • /
    • pp.712-714
    • /
    • 1999
  • The rate constants for the nucleophilic addition of potassium cyanide to α,N-diphenylnitrone and its derivatives (p-OCH3, p-CH3, p-Cl, and p-NO2) were determined by ultraviolet spectrophotometer at 25℃, and the rate equations which can be applied over a wide pH range were obtained. On the basis of pH-rate profile, adduct analysis, general base catalysis and substituent effect, a plausible mechanism of this addition reaction was proposed: At high pH, the cyanide ion to carbon-nitrogen double bond was rate controlling, however, in acidic media, the reaction proceeded by the addition of hydrogen cyanide molecule to carbon-nitrogen double bond after protonation at oxygen of a,N-diphenylnitrone. In the range of neutral pH, these two reactions occured competitively.