Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.9.2873

Investigation of Stereo-dynamic Properties for the Reaction H+HLi by Quasi-classical Trajectory Approach  

Wang, Yuliang (Department of Basic Sciences, Naval Aeronautical and Astronautical University)
Zhang, Jinchun (Department of Basic Sciences, Naval Aeronautical and Astronautical University)
Jiang, Yanlan (Department of Basic Sciences, Naval Aeronautical and Astronautical University)
Wang, Kun (Department of Basic Sciences, Naval Aeronautical and Astronautical University)
Zhou, Mingyu (Department of Basic Sciences, Naval Aeronautical and Astronautical University)
Liang, Xiaorui (Department of Basic Sciences, Naval Aeronautical and Astronautical University)
Publication Information
Abstract
Quasi-classical trajectory (QCT) calculations of H+HLi reaction have been carried out on a new potential energy surface of the ground state reported by Prudente et al. [Chem. Phys. Lett. 2009, 474, 18]. The four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame at various collision energies. The reaction probability for the depletion channel has been studied over a wide collision energy range. It has been found that the collision energy decreases remarkably reaction probability, which shows the expected behavior of the title reaction belonging to an exothermic barrierless reaction. The results are in good agreement with previous RMP results. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r,\;{\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. The average rotational alignment factor <$P_2(j{\prime}{\cdot}k)$> as a function of collision energy is also calculated. The results indicate that the collision energy has a great influence on the polarization of the product rotational angular momentum vector j'.
Keywords
Reaction stereo-dynamics; H+HLi${\rightarrow}$$H_2$+Li reaction; Quasi-classical trajectory; Vector correlations;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Defazio, P.; Petrongolo, C.; Gamallo, P.; Gonzalez, M. J. Chem. Phys. 2005, 122, 214303.   DOI
2 Murrel, J. N.; Carter, S.; Farantos, S. C.; Huxley, P.; Varandas, A. J. C. Molecular Potential Energy Functions; Wiley: Chichester, 1984.
3 Shafer-Ray, N. E.; Orr-Ewing, A. J.; Zare, R. N. J. Phys. Chem. 1995, 99, 7591.   DOI   ScienceOn
4 Orr-Ewing, A. J.; Zare, R. N. Annu. Rev. Phys. Chem. 1994, 45, 315.   DOI
5 Aoiz, F. J.; Brouard, M.; Enriquez, P. A. J. Chem. Phys. 1996, 105, 4964.   DOI   ScienceOn
6 Kandel, S. A.; Alexander, A. J.; Kim, Z. H.; Zare, R. N.; Aoiz, F. J.; Bañares, L.; Castillo, J. F.; Sáez Rábanos, V. J. Chem. Phys. 2000, 112, 670.   DOI
7 Chen, M. D.; Han, K. L.; Lou, N. Q. J. Chem. Phys. 2003, 118, 4463.   DOI   ScienceOn
8 Wang, M. L.; Han, K. L.; He, G. Z. J. Chem. Phys. 1998, 109, 5446.   DOI   ScienceOn
9 Chen, M. D.; Han, K. L.; Lou, N. Q. Chem. Phys. Lett. 2002, 357, 483.   DOI
10 Bovino, S.; Wernli, M.; Gianturco, F. A. Astrophys. J. 2009, 699, 383.   DOI
11 Bodo, E.; Gianturco, F. A.; Martinazzo, R. J. Phys. Chem. A 2001, 105, 10986.   DOI
12 Padmanaban, R.; Mahapatra, S. J. Chem. Phys. 2002, 117, 6469.   DOI   ScienceOn
13 Padmanaban, R.; Mahapatra, S. J. Chem. Phys. 2004, 121, 7681.   DOI   ScienceOn
14 Padmanaban, R.; Mahapatra, S. J. Phys. Chem. A 2006, 110, 6039.   DOI   ScienceOn
15 Bodo, E.; Gianturco, F. A.; Martinazzo, R. J. Phys. Chem. A 2001, 105, 10994.   DOI
16 Bulut, N.; Castillo, J. F.; Aoiz, F. J.; Banares, L. Phys. Chem. Chem. Phys. 2008, 10, 821.   DOI   ScienceOn
17 Bulut, N.; Castillo, J. F.; Banares, L.; Aoiz, F. J. J. Phys. Chem. A 2009, 113, 14657   DOI
18 Aslan, E.; Bulut, N.; Castillo, J. F.; Bañares, L.; Roncero, O.; Aoiz, F. J. J. Phys. Chem. A 2012, 116, 132.   DOI
19 Bodo, E.; Gianturco, F. A.; Martinazzo, R.; Forni, A.; Famulari, A.; Raimondi, M. J. Phys. Chem. A 2000, 104, 11972.   DOI   ScienceOn
20 Bodo, E.; Gianturco, F. A.; Martinazzo, R.; Raimondi, M. Chem. Phys. 2001, 271, 309.   DOI
21 Pino, I.; Martinazzo, R.; Tantardini, G. F. Phys. Chem. Chem. Phys. 2008, 10, 5545.   DOI   ScienceOn
22 Bovino, S.; Steocklin, T.; Gianturco, A. Astrophys. J. 2010, 708, 1560.   DOI
23 Roy, T.; Rao, T. R.; Mahapatra, S. Chem. Phys. Lett. 2011, 501, 252.   DOI
24 Gogtas, F. J. Chem. Phys. 2005, 123, 244301.   DOI
25 Wagner, A. F.; Wahl, A. C.; Karo, A. M.; Krejci, R. J. Chem. Phys. 1978, 69, 3756.   DOI
26 Bodo, E.; Gianturco, F. A.; Martinazzo, R. Phys. Rep. 2003, 384, 85.   DOI
27 Lepp, S.; Shull, J. M. Astrophys. J. 1984, 280, 465.   DOI
28 Clarke, N. J.; Sironi, M.; Raimondi, M.; Kumar, S.; Gianturco, F. A.; Buonomo, E.; Cooper, D. L. Chem. Phys. 1998, 233, 9.   DOI   ScienceOn
29 Lee, H. S.; Lee, Y. S.; Jeung, G. H. J. Phys. Chem. A 1999, 103, 11080.   DOI   ScienceOn
30 Dunne, L. J.; Murrell, J. N.; Jemmer, P. Chem. Phys. Lett. 2001, 336, 1.   DOI   ScienceOn
31 Kim, K. H.; Lee, Y. S.; Ishida, T.; Jeung, G. J. Chem. Phys. 2003, 119, 4689.   DOI   ScienceOn
32 Prudente, F. V.; Marques, J. M. C.; Maniero, A. M. Chem. Phys. Lett. 2009, 474, 18.   DOI   ScienceOn
33 Wernli, M.; Caruso, D.; Bodo, E.; Gianturco, F. A. J. Phys. Chem. A 2009, 113, 1121.   DOI   ScienceOn
34 Martinazzo, R.; Bodo, E.; Gianturco, F. A.; Raimondi, M. Chem. Phys. 2003, 287, 335.   DOI
35 Martinazzo, R.; Tantardini, G. F.; Bodo, E.; Gianturco, F. A. J. Chem. Phys. 2003, 119, 11241.   DOI   ScienceOn
36 Hsiao, M. K.; Lin, K. C.; Hung, Y. M. J. Chem. Phys. 2011, 134, 034119.   DOI