• Title/Summary/Keyword: reaction crystallization

Search Result 248, Processing Time 0.025 seconds

Classification of metals inducing filed aided lateral crystallization (FALC) of amorphous silicon

  • Jae-Bok Lee;Se-Youl Kwon;Duck-Kyun Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.160-165
    • /
    • 2001
  • The effects of various metals on Field Aided Lateral Crystallization (FALC) behaviors of amorphous silicon (a-Si) were investigated. Under an influence of electric field, metals such s Cu, Ni and Co were found to fasten the lateral crystallization toward a metal-free region, exhibiting a typical FALC behavior while the lateral crystallization of a-Si was not obvious for Pd. However, Au, Al and Cr did not induce the lateral crystallization of a-Si in metal-free region. Such phenomenological differences in various metals were studied in terms of dominant diffusing species (DDS) in the reaction between metal and Si. It was judged that the applied electric field enhanced the crystallization velocity by accelerating the diffusion of metal atoms since the occurrence of lateral crystallization would be strongly dependent on the diffusion of metal atoms than that of Si atoms. Therefore, it was concluded that he only metal-dominant diffusing species in the reaction between metal and Si results in the crystallization of a-Si in metal-free region.

  • PDF

Reaction Route to the Crystallization of Copper Oxides

  • Chen, Kunfeng;Xue, Dongfeng
    • Applied Science and Convergence Technology
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2014
  • Copper is an important component from coin metal to electronic wire, integrated circuit, and to lithium battery. Copper oxides, mainly including $Cu_2O$ and CuO, are important semiconductors for the wide applications in solar cell, catalysis, lithium-ion battery, and sensor. Due to their low cost, low toxicity, and easy synthesis, copper oxides have received much research interest in recent year. Herein, we review the crystallization of copper oxides by designing various chemical reaction routes, for example, the synthesis of $Cu_2O$ by reduction route, the oxidation of copper to $Cu_2O$ or CuO, the chemical transformation of $Cu_2O$ to CuO, the chemical precipitation of CuO. In the designed reaction system, ligands, pH, inorganic ions, temperature were used to control both chemical reactions and the crystallization processes, which finally determined the phases, morphologies and sizes of copper oxides. Furthermore, copper oxides with different structures as electrode materials for lithium-ion batteries were also reviewed. This review presents a simple route to study the reaction-crystallization-performance relationship of Cu-based materials, which can be extended to other inorganic oxides.

Development of spherical crystallization technique and its application to pharmaceutical systems

  • Kawashima, Yoshiaki
    • Archives of Pharmacal Research
    • /
    • v.7 no.2
    • /
    • pp.145-151
    • /
    • 1984
  • A novel agglomeration technique, termed "Spherical Crystallization Process", which can transform directly the fine crystals produced in the crystallization or the reaction process into a spherical shape was developed. By this technique, needle like crystals such as salicylic acid were transformed into free flowing and directly compressible agglomerates. Sphericaly agglomerated aminophyline crystals were obtained directly from the reaction system, which could reduce the preparation processes, e. g. synthesis, crystallization and agglomeration, into only one step. Sodium theophyline monohydrate agglomerates were prepared by salting out, the rate process of which was described by a first order kinetics. Agglomerated crystals of ndw complex of indo-methacin-mepirizole were prepare with this technique; an improved therapeutic effect of the resultant crystals was expected. expected.

  • PDF

Crystallization Behavior of Poly(ethylene terephthalate)/Ethylene-Methyl acrylate-Glycidyl methacrylate Copolymer Blend (폴리에틸렌테레프탈레이트/에틸렌-메틸아크릴레이트-글리시딜 메타크릴레이트 공중합물 블렌드의 결정화 거동)

  • 성상엽;이종관;이광희;진병석
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.848-854
    • /
    • 2001
  • The crystallization behavior of poly (ethylene terephthalate) (PET) /ethylene-methyl acrylate-glycidyl methacrylate copolymer (E-MeA-GMA) blend was studied. The extent of reaction and the reaction rate between PET and E-MeA-GMA were measured with torque rheometer, FT-IR and SEM. The effects of the grafting reaction on the crystallization behavior were investigated with DSC and time-resolved light scattering (TR-LS) techniques. The morphological change at the lamellar level was also examined by using a small angle X-ray scattering (SAXS) method.

  • PDF

Crystallization Vitrification and Phase Separation

  • Kim, Sung-Chul
    • The Korean Journal of Rheology
    • /
    • v.1 no.1
    • /
    • pp.12-19
    • /
    • 1989
  • Polymer fluid flow and polymerization reaction occur simultaneously during the reactive polymer processing. The viscosity and physical properties change as thereaction proceeds and the crystallization and vitrifica-tion occur as the T,,,and the Tg of the polymerizing fluid exceeds the reaction temperature within the mold.

  • PDF

A Study on recycling of waste concrete for ${PO}_4^{3-}$-P removal contained in livestock wastewater (축산폐수에 함유된 ${PO}_4^{3-}$-P의 제거를 위한 폐콘크리트의 재활용에 관한 연구)

  • 김은호;박진식;성낙창;이영형;신남철;전기일
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.227-231
    • /
    • 1999
  • This study was conducted to investigate the removal characteristics of $PO_4^{3-}-P$ contained in livestock wastewater using waste concrete. With small particle size, increased dosage and temperature of water, $PO_4^{3-}-P$ was well removed by waste concrete.$PO_4^{3-}-P$ was removed by adsorption reaction in low pH of the primary phase, but the crystallization reaction predominated for increasing pH with passed time. As a result of adapting the adsorption isotherm equation, $PO_4^{3-}-P$ removal was more affected by the crystallization reaction than the adsorption reaction. In the SEM micrograph, there was no evident change on the waste concreter surface. Particle size was plate-phase before reaction but appeared a dense form to progress in the crystallization reaction.

  • PDF

Thermite Reaction Between CuO Nanowires and Al for the Crystallization of a-Si

  • Kim, Do-Kyung;Bae, Jung-Hyeon;Kim, Hyun-Jae;Kang, Myung-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.5
    • /
    • pp.234-237
    • /
    • 2010
  • Nanoenergetic materials were synthesized and the thermite reaction between the CuO nanowires and the deposited nano-Al by Joule heating was studied. CuO nanowires were grown by thermal annealing on a glass substrate. To produce nanoenergetic materials, nano-Al was deposited on the top surface of CuO nanowires. The temperature of the first exothermic reaction peak occurred at approximately $600^{\circ}C$. The released heat energy calculated from the first exothermic reaction peak in differential scanning calorimetry, was approximately 1,178 J/g. The combustion of the nanoenergetic materials resulted in a bright flash of light with an adiabatic frame temperature potentially greater than $2,000^{\circ}C$. This thermite reaction might be utilized to achieve a highly reliable selective area crystallization of amorphous silicon films.

Crystallization Kinetics of $PbO-TiO_2-SiO_2-B_2O_3$ Glasses by DSC (DSC에 의한 $PbO-TiO_2-SiO_2-B_2O_3$계 유리의 결정화 속도)

  • 손명모;이승호;이헌수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1331-1336
    • /
    • 1995
  • The glass-ceramics for ferro-electric were made from compositions of 70PbO.16TiO2.8SiO2.4B2O3.2AlPO4 (wt%) and 67.5PbO.20TiO2.8.5SiO2.2B2O3.2AlPO4 (wt%). The crystallization kinetics for PbTiO3 crystalline phase formation from glass was studied using non-isothermal DSC techniques. The values of activation energy, ΔE using variables of heating rate and temperature were calculated at various reaction fractions obtained from peak area over DSC. The results indicated that activation energy was lowest at 60% reaction fractions and the activation energy of glass containing 20.0 wt% TiO2 is higher than that of glass containing 16.0 wt% TiO2. The crystallization mechanism was three dimensional growth (n=4).

  • PDF

Colloidal Crystallization in Microgravity

  • Okubo, Tsuneo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.5-6
    • /
    • 2003
  • Kinetic study on the colloidal crystallization of single component and mixture of different sizes or densities of spheres was made in the exhaustively deionized suspensions and in microgravity, and compared with the results in normal gravity. Colloidal crystallization rates were retarded in microgravity for single component of spheres, whereas rates of alloy crystallization were enhanced substantially in microgravity. The rotational diffusion coefficients of colloids and the formation reaction rates of colloidal silica spheres were also studied in microgravity.

  • PDF

Effects of operating conditions on the crystallization of lanthanum oxalate in semi-batch reactor (반회분식 반응기에서 란타늄 옥살레이트 결정화에 미치는 조업 조건의 영향)

  • 이종석;김운수;김우식;김용욱;김준수;장희동
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.449-462
    • /
    • 1996
  • On the reaction crystallization of lanthanum oxalate effects of operation conditions of impeller speed, concentration and feed rate of reactant, and reaction temperature on the nucleation and growth of crystals were investigated experimentally. In general, at low supersation the analysis of crystallization processes is relatively clear. However, at high wupersaturation, which is usually applied in industrial crystallization, the processes are exhibited in much complication. In this study the lanthanum oxalate was crystallized by the reaction crystallization of high concentration of lanthanum chloride and oxalic acid in single-jet semi batch reactor. Agitation of solution and suspension in the reactor influenced to enhance the reaction process and crystal growth process which gave opposite effect on the crystallization of lanthanum oxalate. In our experiment since increase of impeller speed gave more influence on the reaction process rather than on the crystal growth process, the supersaturation concentration increased with increase of impeller speed, then resulted in decrease of mean crystal size. By the same effect of reactant concentration and feed rate, the decrease of mean crystall size of lanthanum oxalate was observed with increasing the reactant concentration and feed rate. In case of increasing reaction temperature, the mean crystal size increased. The morphology of lanthanum oxalate crystal was not changed within the variation ranges of the operation conditions which were applied in our experiment.

  • PDF