• 제목/요약/키워드: reactance load algorithm

검색결과 8건 처리시간 0.025초

Passive parasitic UWB antenna capable of switched beam-forming in the WLAN frequency band using an optimal reactance load algorithm

  • Lee, Jung-Nam;Lee, Yong-Ho;Lee, Kwang-Chun;Kim, Tae Joong
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.715-730
    • /
    • 2019
  • We propose a switched beam-forming antenna that satisfies not only ultra-wideband characteristics but also beam-forming in the WLAN frequency band using an ultra-wideband antenna and passive parasitic elements applying a broadband optimal reactance load algorithm. We design a power and phase estimation function and an error correction function by re-analyzing and normalizing all the components of the parasitic array using control system engineering. The proposed antenna is compared with an antenna with a pin diode and reactance load value, respectively. The pin diode is located between the passive parasitic elements and ground plane. An antenna beam can be formed in eight directions according to the pin diode ON (reflector)/OFF (director) state. The antenna with a reactance load value achieves a better VSWR and gain than the antenna with a pin diode. We confirm that a beam is formed in eight directions owing to the RF switch operation, and the measured peak gain is 7 dBi at 2.45 GHz and 10 dBi at 5.8 GHz.

리액턴스 효과를 최소한 병행 2회선 송전선로 보호 거리계전 알고리즘 (A Distance Relaying Algorithms Immune to Reactance Effect for Double-Circuit Transmission Line Systems)

  • 안용진;강상희;이승재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권1호
    • /
    • pp.38-44
    • /
    • 2001
  • For double-circuit transmission line systems, an accurate digital distance relaying algorithm immune to the reactance effect is proposed. The apparent impedance calculated by the distance relay is influenced by the combined reactance effect of the fault resistance and the load current as well as the mutual coupling effect caused by the zero-sequence current of the adjacent parallel circuit. To compensate the magnitude and phase of the estimated impedance, this algorithm uses phase angle difference between the zero(positive) sequence of the both side of the system seperated by the fault point. The impedance measuring algorithm presented used a current distribution factor to compensate mutual coupling effect instead of the collected zero-sequence current of the adjacent parallel circuit.

  • PDF

상호결합효과와 리액턴스효과를 제거한 765kV 비연가 송전선로 보호용 거리계전 알고리즘 (A New Distance Relaying Algorithm Immune to Mutual Coupling Effect and Reactance Effect for 765kV Untransposed Parallel Transmission Lines)

  • 안용진;강상희
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권1호
    • /
    • pp.25-30
    • /
    • 2005
  • An accurate digital distance relaying algorithm which is immune to mutual coupling effect and reactance effect of the fault resistance and the load current for the line faults in 765kV untransposed transmission lines is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the magnitude and phase of the apparent impedance, this algorithm uses the angle of an impedance deviation vector. The impedance correction algorithm for phase-to-ground fault and phase-to-phase short fault use a voltage equation at fault point to compensate the fault current at fault point. A series of tests using EMTP output data in a 765kV untransposed transmission lines have proved the accuracy and effectiveness of the proposed algorithm.

λ/64-spaced compact ESPAR antenna via analog RF switches for a single RF chain MIMO system

  • Lee, Jung-Nam;Lee, Yong-Ho;Lee, Kwang-Chun;Kim, Tae Joong
    • ETRI Journal
    • /
    • 제41권4호
    • /
    • pp.536-548
    • /
    • 2019
  • In this study, an electronically steerable parasitic array radiator (ESPAR) antenna via analog radio frequency (RF) switches for a single RF chain MIMO system is presented. The proposed antenna elements are spaced at ${\lambda}/64$, and the antenna size is miniaturized via a dielectric radome. The optimum reactance load value is calculated via the beamforming load search algorithm. A switch simplifies the design and implementation of the reactance loads and does not require additional complex antenna matching circuits. The measured impedance bandwidth of the proposed ESPAR antenna is 1,500 MHz (1.75 GHz-3.25 GHz). The proposed antenna exhibits a beam pattern that is reconfigurable at 2.48 GHz due to changes in the reactance value, and the measured peak antenna gain is 4.8 dBi. The reception performance is measured by using a $4{\times}4$ BPSK signal. The measured average SNR is 17 dB when using the proposed ESPAR antenna as a transmitter, and the average SNR is 16.7 dB when using a four-conventional monopole antenna.

고장저항의 영향을 최소화한 순환형 거리계전 알고리즘 (A Recursive Distance Relaying Algorithm Immune to Fault Resistance)

  • 안용진;강상희;이승재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.259-261
    • /
    • 2001
  • An accurate digital distance relaying algorithm which is immune to the combined reactance effect of the fault resistance and the load current is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the apparent impedance, this algorithm uses iteratively the angle of an impedance deviation vector improved step by step. The impedance correction algorithm for ground faults uses a current distribution factor to compensate mutual coupling effect.

  • PDF

Design of an Asymmetrical Three-phase Inverter for Load Balancing and Power Factor Correction Based on Power Analysis

  • Mokhtari, M.;Golshannavaz, S.;Nazarpour, D.;Aminifar, F.
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.293-301
    • /
    • 2011
  • This paper presents a novel theoretical method based on power analysis to obtain voltage reference values for an inverter-based compensator. This type of compensator, which is installed in parallel with the load, is usually referred to as the active filter. The proposed method is tailored to design the compensator in such a way that it can simultaneously balance the asymmetric load, as well as correct the power factor of the supply side. For clarity, a static compensator is first considered and a recursive algorithm is utilized to calculate the reactance values. The algorithm is then extended to calculate voltage reference values when the compensator is inverter based. It is evident that the compensator would be asymmetric since the load is unbalanced. The salient feature associated with the proposed method is that the circuit representation of system load is not required and that the load is recognized just by its active and reactive consumptions. Hence, the type and connection of load do not matter. The validity and performance of the new approach are analyzed via a numerical example, and the obtained results are thoroughly discussed.

765kV 비연가 송전선로에서 단상지락고장 시어 거리개전 알고리즘 (A New Distance Relaying Algorithm for Phase-to-Ground Fault in 765kV Untransposed Transmission Lines)

  • 안용진;강상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.452-454
    • /
    • 2004
  • An accurate digital distance relaying algorithm which is immune to reactance effect of the fault resistance and the load current for phase-to-ground fault in 765kV untransposed transmission lines is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the magnitude and phase of the apparent impedance, this algorithm uses the angle of an impedance deviation vector. The impedance correction algorithm for Phase-to-ground fault uses a voltage equation at fault point to compensate the fault current at fault point. A series of tests using EMTP output data in a 765kV untransposed transmission lines have proved the accuracy and effectiveness of the proposed algorithm.

  • PDF

765kV 비연가 송전선로에서 상간단락고장 시어 거리계전 알고리즘 (A New Distance Relaying Algorithm for Phase-to-Phase Short Fault in 765kV Untransposed Transmission Lines)

  • 안용진;강상회
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.455-457
    • /
    • 2004
  • An accurate digital distance relaying algorithm which is immune to reactance effect of the fault resistance and the load current for phase-to-phase short fault in 765kV untransposed transmission lines is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the magnitude and phase of the apparent impedance, this algorithm uses the angle of an impedance deviation vector. The impedance correction algorithm for phase-to-phase short fault uses a voltage equation at fault point to compensate the fault current at fault point. A series of tests using EMTP output data in a 765kv untransposed transmission lines have proved the accuracy and effectiveness of the proposed algorithm.

  • PDF