Browse > Article
http://dx.doi.org/10.4218/etrij.2018-0393

Passive parasitic UWB antenna capable of switched beam-forming in the WLAN frequency band using an optimal reactance load algorithm  

Lee, Jung-Nam (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
Lee, Yong-Ho (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
Lee, Kwang-Chun (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
Kim, Tae Joong (Hyper-connected Communication Research Laboratory, Electronics and Telecommunications Research Institute)
Publication Information
ETRI Journal / v.41, no.6, 2019 , pp. 715-730 More about this Journal
Abstract
We propose a switched beam-forming antenna that satisfies not only ultra-wideband characteristics but also beam-forming in the WLAN frequency band using an ultra-wideband antenna and passive parasitic elements applying a broadband optimal reactance load algorithm. We design a power and phase estimation function and an error correction function by re-analyzing and normalizing all the components of the parasitic array using control system engineering. The proposed antenna is compared with an antenna with a pin diode and reactance load value, respectively. The pin diode is located between the passive parasitic elements and ground plane. An antenna beam can be formed in eight directions according to the pin diode ON (reflector)/OFF (director) state. The antenna with a reactance load value achieves a better VSWR and gain than the antenna with a pin diode. We confirm that a beam is formed in eight directions owing to the RF switch operation, and the measured peak gain is 7 dBi at 2.45 GHz and 10 dBi at 5.8 GHz.
Keywords
passive parasitic element; reactance load algorithm; switched beam-forming; ultra-wideband;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 M. Harter et al., 24 GHz digital beamforming radar with T-shaped antenna array for three-dimensional object detection, Int. J. Microw. Wireless Technol. 4 (2011), no. 3, 327-334.   DOI
2 S. Kim and Y. E. Wang, A series-fed microstrip receiving array for digital beamforming, IEEE Antennas Wirel. Propag. Lett. 3 (2004), 332-335.   DOI
3 D. H. Gwak, I. S. Sohn, and S. H. Lee, Analysis of single-RF MIMO receiver with beam-switching antenna, ETRI J. 37 (2015), 647-656.   DOI
4 P. K. Pal and R. S. Sherratt, MIMO channel capacity and configuration selection for switched parasitic antennas, ETRI J. 40 (2018), 197-206.   DOI
5 J. N. Lee and J. K. Park, Compact uwb chip antenna design using the coupling concept, Prog. Electromag. Res. 90 (2009), 341-351.   DOI
6 P. Gao and S. He, A compact uwb and bluetooth slot antenna for mimo/diversity applications, ETRI J. 36 (2014), no. 2, 309-312.   DOI
7 J. N. Lee et al., Design of dual-band antenna with u-shaped open stub for wlan/uwb applications, Microw. Opt. Technol. Lett. 51 (2009), no. 2, 284-289.   DOI
8 J. N. Lee, J. K. Park, and I. H. Choi, A compact filter-combined ultra-wideband antenna for uwb applications, Microw. Opt. Technol. Lett. 50 (2008), no. 11, 2839-2845.   DOI
9 J. N. Lee, J. K. Park, and S. S. Choi, Design of a compact frequency notched uwb slot antenna, Microw. Opt. Technol. Lett. 48 (2006), no. 1, 105-107.   DOI
10 J. N. Lee and J. K. Park, Impedance characteristics of a trapezoidal ultra-wideband antenna having a notch function, Microw. Opt. Technol. Lett. 46 (2005), no. 5, 503-506.   DOI
11 L. C. Godara, Application of antenna arrays to mobile communications. II. Beam-forming and direction-of-arrival considerations, Proc. IEEE. 85 (1997), no. 8, 1195-1245.   DOI
12 M. V. Ivashina et al., An optimal beamforming strategy for widefiled surveys with phased-array-fed reflector antennas, IEEE Trans. Antennas Propag. 59 (2011), no. 6, 1864-1875.   DOI
13 X. Gao, L. Dai, and A. M. Sayeed, Low RF-complexity technologies to enable millimeter-wave mimo with large antenna array for 5g wireless communications, IEEE Commun. Mag. 56 (2018), no. 4, 211-217.   DOI
14 Y. K. Cho et al., ${\lambda}$/16 spaced single RF chain MIMO antenna using low-power CMOS switches, Eur. Microw. Conf., Paris, France, Dec. 2015, pp. 726-729.
15 S. Zhang, I. Syrytsin, and G. F. Pedersen, Compact beam-steerable antenna array with two passive parasitic elements for 5G mobile terminals at 28 GHz, IEEE Trans. Antennas Propag. 66 (2018), 5193-5203.   DOI
16 M. Yousefbeiki and J. P. Carrier, Towards compact and frequency-tunable antenna solutions for MIMO transmission with a single RF chain, IEEE Trans. Antennas Propag. 62 (2014), no. 3, 1065-1073.   DOI
17 J. Cheng, Y. Kamiya, and T. Ohira, Adaptive beamforming of ESPAR antenna based on steepest gradient algorithm, IEICE Trans. Commun. E84-B (2001), no. 7, 1790-1800.
18 C. Sun et al., Fast beamforming of electronically steerable parasitic array radiator antenna: Theory and experiment, IEEE Trans. Antennas Propag. 52 (2004), no. 7, 1819-1832.   DOI
19 M. Yousefbeiki, O. N. Alrabadi, and J. P. Carrier, Efficient MIMO transmission of PSK signals with a single-radio reconfigurable antenna, IEEE Trans. Commun. 62 (2014), 567-577.   DOI
20 SKY13575-639LF Datasheet and Product Info, http://www.skyworksinc.com.
21 K. Kibaroglu, M. Sayginer, and G. M. Rebeiz, An Ultra low-cost 32-element 28 GHz phased-array transceiver with 41 dBm EIRP and 1.0 - 1.6 Gbps 16-QAM link at 300 meters, in IEEE Radio Freq. Integrat. Circuits Symp. Honoloulu, HI, USA, June 2017, pp. 73-76.
22 S. Zhang et al., A planar switchable 3-D-coverage phased array antenna and its user effects for 28-GHz mobile terminal applications, IEEE Trans. Antennas Propag. 65 (2017), no. 12, 6413-6421.   DOI
23 S. Han et al., Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G, IEEE Commun. Mag. 53 (2015), no. 1, 186-194.   DOI
24 J. D. Fredrick, Y. Wang, and T. Itoh, A smart antenna receiver array using a single RF channel and digital beamforming, IEEE Trans. Microw. Theory Tech. 50 (2002), no. 12, 3052-3058.   DOI
25 W. Roh et al., Millimeter-wave beamforming as an enabling technology for 5g cellular communications: theoretical feasibility and prototype results, IEEE Commun. Mag. 52 (2014), no. 2, 106-113.   DOI
26 J. Zhang, W. Wu, and D. G. Fang, Single RF channel digital beamforming multibeam antenna array based on time sequence phase weighting, IEEE Antennas Wirel. Propag. Lett. 10 (2011), 514-516.   DOI
27 J. N. Lee et al., Design of an ultra-wideband antenna using a ring resonator with a notch function, ETRI J. 35 (2013), no. 6, 1075-1083.   DOI