• Title/Summary/Keyword: rbcL sequences

Search Result 112, Processing Time 0.029 seconds

Plastid Transformation of Soybean Suspension Cultures

  • Zhang, Xing-Hai;Archie R.Portis. Jr.;Jack M.Widholm
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.39-44
    • /
    • 2001
  • Plastid transformation was attempted with soybean [Glycine max (L.) Merr.] leaves and photoautotrophic and embryogenic cultures by particle bombardment using the transforming vector pZVII that carries the coding sequences for both subunits of Chlamydomonas reinhardtii Rubisco and a spectinomycin resistance gene (aadA). Spectinomycin resistant calli were selected from the bombarded leaves but the transgene was not present, indicating that the resistance was due to mutations. The Chlamydomonas rbcL and rbcS genes were shown to be site-specifically integrated into the plastid genome of the embryogenic cells with a very low transformation efficiency. None of the transformed embryogenic lines survived the plant regeneration process so no whole plants were recovered. This result does indicate that it should be possible to insert genes into the plastid genome of the important crop soybean if the overall methods are improved.

  • PDF

PCR Analysis for the Discrimination of Leonuri Herba Medicine on the Basis of Chloroplast DNA Sequence Comparison in Six Lamiaceae Species (꿀풀과 6개종의 Chloroplast 부위 유전자를 이용한 익모초(益母草) 감별 PCR 분석)

  • Lee, Jae-Woong;Kim, Young-Hwa;Choi, Go-Ya;Ko, Byoung-Seob;Kim, Young-Sun;Chae, Sung-Wook;Lee, Hye-Won;Oh, Seung-Eun;Park, Sang-Un;Lee, Mi-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.3
    • /
    • pp.15-21
    • /
    • 2011
  • Objectives : The application of polymerase chain reaction (PCR) for the discrimination of the herbal medicine Leonuri Herba (Leonurus japonicus) was evaluated by the comparison of the DNA sequence with Lamiaceae herbal medicine. Method : Genetic analysis showed that phylogenetic tree and comparing sequences through the DNA analysis of rbcL (ribulose-1, 5-bisphosphatecarboxylase) region and trnL-F (tRNA-Leu, trnL-trnF intergeni cspacer, and tRNA-Phe) region of chloroplast DNA from six Lamiaceae sold in market. And we developed IMCF and IMCR primers in order to distinction Leonuri Herba in six Lamiaceae using rbcL and trnL-F sequences. Results : Genetic analysis showed that six Lamiaceae showed individual group on phylogenetic tree. PCR amplification product of Leonuri Herba and another five Lamiaceae were developed for amplification of a 281 bp sequence and the specific PCR amplification of a 460 bp sequence that was exclusive to Leonuri Herba was designed using IMCF and IMCR primers. Conclusion : PCR analysis based on the chloroplast DNA sequences allows the discrimination of Leonuri Herba-based medicine.

Identification of Korean Poaceae Weeds Based on DNA Sequences (DNA 염기서열에 기초한 벼과 잡초의 분자생물학적 동정)

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong;Oh, Hyun-Ju;Kim, Jung Hyun;Kim, Sun Yu
    • Weed & Turfgrass Science
    • /
    • v.4 no.1
    • /
    • pp.26-34
    • /
    • 2015
  • Korean Poaceae includes approximately 80 species of the agricultural weeds. Precise species identification is the first step for more effective weed management in the agricultural fields. However, the identification of species in Poaceae is not easy without the assistance of taxonomists or identification experts although they are relatively easy to distinguish from the plants of the other family by the unique characteristics of caryopsis. Thus, DNA barcode was suggested as an alternative powerful technique for species identification by using short sections of DNA from a specific region of the genome. Two standard barcode markers of vascular plants, chloroplast rbcL and matK, and a supplementary nuclear ribosomal Internal Transcribed Spacer (ITS) region were used for barcode of major Korean Poaceae weeds, 403 individuals of 84 taxa. All the barcode markers revealed a good level of sequencing success with the lowest 73.7% for matK and the highest 88.8% for rbcL. The barcode sequences were deposited to the National Center for Biotechnology Information (NCBI) database for public use. Combined matK and ITS showed very high resolving power with 92.9%. Besides the identification of weeds for weed managment, the generated DNA barcode data could be used for many other applications such as rapid biodiversity assessment and conservation prioritization.

Morphology and phylogenetic position of a freshwater Prasiola species (Prasiolales, Chlorophyta) in Korea

  • Kim, Moon Sook;Jun, Man-Sig;Kim, Cho A;Yoon, Jihae;Kim, Jin Hee;Cho, Ga Youn
    • ALGAE
    • /
    • v.30 no.3
    • /
    • pp.197-205
    • /
    • 2015
  • The genus of leafy green algae, Prasiola Meneghini, includes marine, terrestrial, and freshwater species. A total of 11 species and one variety have been identified in China, Korea, and Japan. In Korea, Prasiola formosana var. coreana has been reported in Muncheon, North Korea, while a different type of Prasiola species has been reported in South Korea. The South Korean species has been found growing along a small stream originating from Chodanggul Cave, a limestone cave in Samcheok, Gangwon Province. Here, we revised the morphological characteristics of the South Korean Prasiola species and analyzed plastid rbcL, psaB, and tufA genes to clarify its identity. Although the external and anatomical morphologies varied among individuals, our results were very similar to previous reports. Plastid three genes sequences of the South Korean specimens were identical to those of P. japonica collected from Japan as well as to published sequences of P. yunnanica from China. A short rbcL-3P sequence (196 bp) from P. formosana var. coreana, which was identified in the type specimen, was also identical to a sequence from P. japonica. These Prasiola species and variety from Korea, Japan, and China are all distributed in areas characterized by limestone bedrock. Based on morphological, phylogenetic, and distributional features, the South Korean Prasiola species is regarded herein as P. japonica. Here, we also propose to synonymize P. formosana var. coreana and P. yunnanica with P. japonica.

tufA gene as molecular marker for freshwater Chlorophyceae

  • Vieira, Helena Henriques;Bagatini, Inessa Lacativa;Guinart, Carla Marques;Vieira, Armando Augusto Henriques
    • ALGAE
    • /
    • v.31 no.2
    • /
    • pp.155-165
    • /
    • 2016
  • Green microalgae from the class Chlorophyceae represent a major biodiversity component of eukaryotic algae in continental water. Identification and classification of this group through morphology is a hard task, since it may present cryptic species and phenotypic plasticity. Despite the increasing use of molecular methods for identification of microorganisms, no single standard barcode marker is yet established for this important group of green microalgae. Some available studies present results with a limited number of chlorophycean genera or using markers that require many different primers for different groups within the class. Thus, we aimed to find a single marker easily amplified and with wide coverage within Chlorophyceae using only one pair of primers. Here, we tested the universality of primers for different genes (tufA, ITS, rbcL, and UCP4) in 22 strains, comprising 18 different species from different orders of Chlorophyceae. The ITS primers sequenced only 3 strains and the UCP primer failed to amplify any strain. We tested two pairs of primers for rbcL and the best pair provided sequences for 10 strains whereas the second one provided sequences for only 7 strains. The pair of primers for the tufA gene presented good results for Chlorophyceae, successfully sequencing 21 strains and recovering the expected phylogeny relationships within the class. Thus, the tufA marker stands out as a good choice to be used as molecular marker for the class.

Merging the cryptic genera Radicilingua and Calonitophyllum (Delesseriaceae, Rhodophyta): molecular phylogeny and taxonomic revision

  • Wolf, Marion A.;Sciuto, Katia;Maggs, Christine A.;Petrocelli, Antonella;Cecere, Ester;Buosi, Alessandro;Sfriso, Adriano
    • ALGAE
    • /
    • v.36 no.3
    • /
    • pp.165-174
    • /
    • 2021
  • Radicilingua Papenfuss and Calonitophyllum Aregood are two small genera of the family Delesseriaceae that consist of only three and one taxonomically accepted species, respectively. The type species of these genera, Radicilingua thysanorhizans from England and Calonitophyllum medium from the Americas, are morphologically very similar, with the only recognized differences being vein size and procarp development. To date, only other two species were recognized inside the genus Radicilingua: R. adriatica and R. reptans. In this study, we analysed specimens of Radicilingua collected in the Adriatic and Ionian Sea (Mediterranean), including a syntype locality of R. adriatica (Trieste, northern Adriatic Sea), alongside material from near the type locality of R. thysanorhizans (Torpoint, Cornwall, UK). The sequences of the rbcL-5P gene fragment here produced represent the first molecular data available for the genus Radicilingua. Phylogenetic reconstruction showed that the specimens from the Adriatic and Ionian Seas were genetically distinct from the Atlantic R. thysanorhizans, even if morphologically overlapping with this species. A detailed morphological description of the Mediterranean specimens, together with an accurate literature search, suggested that they were distinct also from R. adriatica and R. reptans. For these reasons, a new species was here described to encompass the Mediterranean specimens investigated in this study: R. mediterranea Wolf, Sciuto & Sfriso. Moreover, in the rbcL-5P tree, sequences of the genera Radicilingua and Calonitophyllum grouped in a well-supported clade, distinct from the other genera of the subfamily Nitophylloideae, leading us to propose that Calonitophyllum medium should be transferred to Radicilingua.