• Title/Summary/Keyword: ratio theory

Search Result 1,828, Processing Time 0.027 seconds

A study on determining of proper retail rents in commercial area (적정의 상가 임대료 결정에 관한 연구)

  • Jeong, Seung-Young;Kim, Hak-Hawn
    • Journal of Cadastre & Land InformatiX
    • /
    • v.44 no.2
    • /
    • pp.177-192
    • /
    • 2014
  • The factors that affect on the ratio of monthly rent to total rents in commercial real estate lease contract was empirically investigated. The theoretical basis for the research was location theory, retail trade-area analysis, bid rent, agglomeration theory, and demand externality theory. The data used in this study included information on goodwills per 3.3 square meters, deposit money per 3.3 square meters, retail rents per 3.3 square meters, and passing pedestrians' characteristics in 96 retail trade areas in South korea. As the results, using the hedonic price functions and multi-regression analysis, the independent variables does affect the ratio of monthly rent to total rents in the each retail trade area were goodwills per 3.3 square meters, deposit money per 3.3 square meters, retail rents per 3.3 square meters, and the number of Small Wholesale Retail Trade Firms at the level of nation. also, the results show goodwills per 3.3 square meters and the number of Small Wholesale Retail Trade Firms are important factors in determining the ratio of monthly rent to total rents in commercial real estate lease contract in seoul. In summary, not only the economic conditions in the retail trade area but also the passing pedestrian count should be considered to determine the ratio of monthly rent to total rents in commercial real estate lease contract.

$H_{\infty}$ Control of Two-Mass System with Resonance Ratio Control (공진비제어를 갖는 2관성계의 $H_{\infty}$ 제어)

  • Kim, Jin-Soo;Kim, Seoung-Beom;Kim, Hyun-Jung;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.504-506
    • /
    • 1996
  • In the industrial motor drive systems, a shaft torsional vibration is often generated when a motor and a load are connected with a flexible shaft. This paper treats the vibration suppression control of this system. The resonance ratio control is proposed for suppressing the torsional vibration. In this paper, first, the optimal resonance ratio is sellected and the controller to the resonance ratio controlled outward plant is designed based on $H_{\infty}$ control theory. Secondly, the two-degree-of-freedom controller, which includes the above $H_{\infty}$ controller, is designed in order to improve the tracking characteristics for the commanded speed. The control performances are examined by the computer simulations and it is clarified that the proposed speed control system is useful for two-mass system.

  • PDF

The Weather Representativeness in Changma Period Established by the Weather Entropy and Information Ratio - Focused on Seoul, Taegu, Gwangju, Chungju, Puyo - (일기엔트로피 및 정보비에 의한 장마기의 일기대표성 설정 - 서울, 대구, 광주, 충주, 부여를 중심으로 -)

  • 박현욱;문병채
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.399-417
    • /
    • 2003
  • The seasonal variation and frequency of rainfalls of Korea peninsula in Changma period show strong local weather phenomenon because of it's topographical and geographical factors in Northeast side of Asia. Based on weather entropy(statistical parameter)-the amount of average weather information-and information ratio, we can define each area's weather representativeness, which can show us more constant form included topographical and geographical factors and seasonal variation. The data used for this study are the daily precipitation and cloudiness during the recent ten years(1990-1999) at the 73 stations in Korea. To synthesize weather Entropy, information ratio of decaying tendency and half$.$decay distance, Seoul's weather representativeness has the smallest in Summer Changma period. And Puyo has the largest value in September.

Free transverse vibration of shear deformable super-elliptical plates

  • Altekin, Murat
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.307-331
    • /
    • 2017
  • Free transverse vibration of shear deformable super-elliptical plates with uniform thickness was studied based on Mindlin plate theory using finite element method. Quadrilateral isoparametric elements were used in the paper. Sensitivity analysis was made to determine the influence of the thickness, the aspect ratio, and the shape of the plate on the natural frequency. Accuracy of the results computed in the current study was validated by comparing them with the solutions available in the literature. The results reveal that the frequencies of clamped super-elliptical plates lie in the range bounded by elliptical and rectangular plates irrespective of the aspect ratio, and furthermore, the frequency decreases if the super-elliptical power increases. A similar trend was observed for simply supported plates with high aspect ratio. The free vibration response for the first and the second symmetric-antisymmetric (SA) modes were found to be different for high aspect ratio. The results reveal that using insufficient number of degrees of freedom results in finding a totally different relation between the super-elliptical power and the frequency.

Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel

  • Kar, Vishesh R.;Panda, Subrata K.
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.693-709
    • /
    • 2015
  • In this article, nonlinear free vibration behaviour of functionally graded spherical panel is analysed. A nonlinear mathematical model is developed based on higher order shear deformation theory for shallow shell by taking Green-Lagrange type of nonlinear kinematics. The material properties of functionally graded material are assumed to be varying continuously in transverse direction and evaluated using Voigt micromechanical model in conjunction with power-law distribution. The governing equation of the shell panel is obtained using Hamilton's principle and discretised with the help of nonlinear finite element method. The desired responses are evaluated through a direct iterative method. The present model has been validated by comparing the frequency ratio (nonlinear frequency to linear frequency) with those available published literatures. Finally, the effect of geometrical parameters (curvature ratio, thickness ratio, aspect ratio and support condition), power law indices and amplitude of vibration on the frequency ratios of spherical panel have been discussed through numerical experimentations.

Structural detection of variation in Poisson's ratio: Monitoring system for zigzag double walled carbon nanotubes

  • Hussain, Muzamal;Asghar, Sehar;Ayed, Hamdi;Khadimallah, Mohamed A.;Alshoaibi, Adil;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.345-352
    • /
    • 2022
  • In this paper, natural frequency curves are presented for three specific end supports considering distinct values of nonlocal parameter. The vibrational behavior of zigzag double walled carbon nanotubes is investigated using wave propagation with nonlocal effect. Frequency spectra of zigzag (12, 0) double walled carbon nanotubes have been analyzed with proposed model. Effects of nonlocal parameters have been fully investigated on the natural frequency against against variation of Poisson's ratio. A slow increase in frequencies against variation of Poisson's ratio also indicates insensitivity of it for suggested nonlocal model. Moreover, decrease in frequencies with increase in nonlocal parameter authenticates the applicability of nonlocal Love shell model. Also the frequency curves for C-F are lower throughout the computation than that of C-C curves.

Simplified Analytical Model for Flexural Response of Fiber Reinforced Plastic Decks (FRP 바닥판의 휨 해석모델 개발)

  • Kim, Young-Bin;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.3 s.17
    • /
    • pp.65-74
    • /
    • 2005
  • An analytical model was developed to investigate the flexural behavior of a pultruded fiber-reinforced plastic deck of rectangular unit module. The model is based on first-order shea. deformable plate theory (FSDT), and capable of predicting deflection of the deck of arbitrary laminate stacking sequences. To formulate tile problem, two-dimensional plate finite element method is employed. Numerical results are obtained for FRP decks under uniformly-distributed loading, addressing the effects of fiber angle and span-to-height ratio. It is found that the present analytical model is accurate and efficient for solving flexural behavior of FRP decks. Also, as the height of FRP deck plate is higher, the necessity of higher order Shear deformable plate theory(HSDT) is announced, not the FSDT in the plate analysis theory.

  • PDF

Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method

  • Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.215-228
    • /
    • 2020
  • In this paper, a new method based on the Sander theory is developed for SWCNTs to predict the vibrational behavior of length and ratio of thickness-to-radius according to various end conditions. The motion equation for this system is developed using Rayleigh-Ritz's method. The proposed model shows the vibration frequencies of armchair (5, 5), (7, 7), (9, 9), zigzag (12, 0), (14, 0), (19, 0) and chiral (8, 3), (10, 2), (14, 5) under different support conditions namely; SS-SS, C-F, C-C, and C-SS. The solutions of frequency equations have been given for different boundary condition, which have been given in several graphs. Several parameters of nanotubes with characteristic frequencies are given and vary continuously in length and ratio of thickness-to-radius. It has been illustrated that an enhancing the length of SWCNTs results in decreasing of the frequency range. It was demonstrated by increasing of the height-to-radius ratio of CNTs, the fundamental natural frequency would increase. Moreover, effects of length and ratio of height-to-radius with different boundary conditions have been investigated in detail. It was found that the fundamental frequencies of C-F are always lower than that of other conditions, respectively. In addition, the existence of boundary conditions has a significant impact on the vibration of SWCNTs. To generate the fundamental natural frequencies of SWCNTs, computer software MATLAB engaged. The numerical results are validated with existing open text. Since the percentage of error is negligible, the model has been concluded as valid.

Deformation Characteristics of Steel Plate Cellular Bulkhead (강판셀 호안의 변형특성)

  • Jeong Wook Kang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.4
    • /
    • pp.165-175
    • /
    • 1997
  • This study qualitatively reviewed effect of the height of loading and the ratio of penetration on. the characteristics of deformation of cellular bulkhead by performing a model test of embedded steel plate cellular bulkhead which had different loading height and penetration ratio. And we also examined the effect of the loading height upon the shear behavior by performing two-dimensional model test making use of aluminum rods for a filler. Besides, test results and theoretical values based on Hansen's earth pressure theory were compared and reviewed. In consequence, it was ascertained that the yield moment of cells depended on the height of loading and the ratio of penetration, and the slip surface was located on the lower area of a cell interior according as the height of loading becomes lower. The theoretical consideration which was based on the theory of earth pressure proposed by Hansen revealed that the test results accorded with the theoretical values to some degree, and the same results were derived about the location change of the slip surface.

  • PDF

Linear Stability of Variable-Viscosity Fluid Layer under Convection Boundary Condition (대류 조건하의 가변 점성 유체층의 선형 안전성)

  • 송태호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.132-141
    • /
    • 1992
  • The critical condition for onset of Benard convection with variable viscosity .nu.=.nu.$_{0}$exp(-CT) has been obtained using a linear stability theory. The bottom wall is rigid while the upper surface may be either free or rigid. The two boundaries are subject to convective heat transfer. The critical Rayleigh numbers are presented up to maximum viscosity ratio of 3000. It is greater for smaller upper and/or lower surface Biot numbers. Its dependence on the viscosity ratio is complicated. However, a simple sublayer theory is found to be applicable for extremely large viscosity ratio. In such cases, the critical Rayleigh number and the critical wave number are functions of viscosity ratio and lower surface Biot number.r.