• Title/Summary/Keyword: ratio of road

Search Result 718, Processing Time 0.027 seconds

Investigation of Lateral Resistance of Short Pile by Large-Scale Load Tests (실물 재하시험을 통한 짧은말뚝의 횡방향 저항거동 평가)

  • Lee, Su-Hyung;Choi, Yeong-Tae;Lee, Il-Wha;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.5-16
    • /
    • 2017
  • When a lateral load is applied to a short pile whose embedded depth is relatively smaller than its diameter, an overturning failure occurs. To investigate the behavior of laterally loaded short piles, several model tests in laboratory scales had been carried out, however the behavior of large moment carrying piles for electric poles, traffic sign and road lamp, etc. have not been revealed yet. This paper deals with the real-scale load tests for 750 mm diameter short piles. To simulate the actual loading condition, very large moment was mobilized by applying lateral loads to the location 8 m away from the pile head. Three load tests changing the pile embedded lengths to 2.0 m, 2.5 m, and 3.0 m were carried out. The test piles overturned abruptly with very small displacement and rotation before the failures. These brittle failures are in contrast with the ductile failures shown in the former model tests with the relatively smaller moment to lateral load ratio. Comparisons of the test results with three existing methods for the estimation of the ultimate lateral capacity show that the method assuming the rotation point at pile tip matches well when the embedded depth is small, however, as the embedded depth increases the other two methods assuming the inversion of soil pressure with respect to rotation points in pile length match better.

Thickness Design of Composite Pavement for Heavy-Duty Roads Considering Cumulative Fatigue Damage in Roller-Compacted Concrete Base (롤러전압콘크리트 기층의 누적피로손상을 고려한 중하중 도로의 복합포장 두께 설계)

  • Kim, Kyoung Su;Kim, Young Kyu;Chhay, Lyhour;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.537-548
    • /
    • 2022
  • It is important to design the pavement thickness considering heavy-duty traffic loads, which can cause excessive stress and strain in the pavement. Port-rear roads and industrial roads have many problems due to early stress in pavement because these have a higher ratio of heavy loads than general roads such as national roads and expressways. Internationally, composite pavement has been widely applied in pavement designs in heavy-duty areas. Composite pavement is established as an economic pavement type that can increase the design life by nearly double compared to that of existing pavement while also decreasing maintenance and user costs. This study suggests a thickness design method for composite pavement using roller-compacted concrete as a base material to ensure long-term serviceability in heavy-duty areas such as port-rear roads and industrial roads. A three-dimensional finite element analysis was conducted to investigate the mechanical behavior and the long-term pavement performance ultimately to suggest a thickness design method that considers changes in the material properties of the roller-compacted concrete (RCC) base layer. In addition, this study presents a user-friendly catalog design method for RCC-base composite pavement considering the concept of linear damage accumulation for each container trailer depending on the season.

Studies on the Processing and Management Forms of Filatures (우리나라 제사공장의 공정 관리실태에 관한 조사연구)

  • 송기언;이인전
    • Journal of Sericultural and Entomological Science
    • /
    • no.12
    • /
    • pp.37-45
    • /
    • 1970
  • The processing management forms of our country's filature factories in 1969 are summarized as follows. (1) About 80% of total cocoon collection is made within 5 days involving peak day, and 10% of cocoon collection is finished until 3 days before and after the peak day, (2) About 92% of alive cocoons transported on unpaved road, and about 40% of the cocoons purchased by all factories are loaded on trucks from common selling station which is far beyond 40km, therefore a new packing system of alive cocoons to drop the damage of cocoon qualities, should be taken. (3) 22% of all factories in our. country have only low-temperature cocoon drying machine. Therefore the installment of hot-air cocoon drying machine is required urgently. (4) In view of cocoon qualities in our country, the grouping method of cocoon for reeling. taken by about 50% of the factories at percent, which classify cocoons for reeling as high group (1,2,3,4 grades) and low group(5,6 grades), will have to be replaced by the method tat classify them high group (1,2 grades) middle group (3,4 grades), low group (5,6 grades). (5) The .ratio of cocoon assorting stood about 10% in multi-ends reeling, about 15% in automatic reeling, conclusively, the ratio of cocoon assorting for automatic reeling was higher tan that for multi-ends reeling. One person's ability for a day in cocoon assorting reaches to about 80-100kg. (6) Cocoon cooking condition requires the increase of the cooking time, the pressure and temperature used to be prolonged as much as the qualities of cocoons are material cocoon ior automatic and double cocoon machines are treated uncompletely. (7) Automatic silk reeling is being performed at 1-2$^{\circ}C$ lower in reeling water temperature and operated at about twice velocity. (8) The temperature and humidity of rereeling room stood at 25$^{\circ}C$, 67.2% R.H and 32.3$^{\circ}C$, 51.9% R.H of rereeling machine are showed, Average rereeling velocity is 233m/min and large reefs charged for one person are 7.5 reels and form of skein used in all factories is double skein. (9) About 73% of water sources for filature used under-earth water. About 48% of all filature factories in our country have not yet water purifying equipments. Installation of the equipment for these factories seems to be urgent, (10) Denier .balance, sizing reel, seriplane, are being used in most factories as self-inspection apparatus. (11) More than 90% of the factories use the vacum tank in rereeling process and about 20% of them use it in cocoon cooing process (12) Only 21% of the factories use chemicals in filature process. About all them use "Seracol 100" in cocoon cooking process and "Seracol 500" in rereeling process, (13) Above survey results explain each all factories show large difference in the processing management. Therefore, it is believed that intercommunication through seminar or technical exchange will contribute to the production evaluation of cocoon in our filature industry.

  • PDF

A Study on Improvement Methods of Cost Estimation in Order for the Proper Management of Street Trees (도시 가로수 관리 품셈 개선에 관한 연구)

  • Do, Yoon-Taek;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.4
    • /
    • pp.20-36
    • /
    • 2022
  • This study aims to provide basic data for high-quality street tree management by setting reasonable management items and appropriate unit prices by reviewing the adequacy of current street tree management. Currently, street tree management items, except for street tree pruning, use general landscape tree quantity per unit for the street tree management quantity per unit. KEPCO (Korea Electric Power Corporation) applied pruning items from standard electric production infrastructure and carried out the activities at an average unit price of 51% lower for heavy pruning and 39% lower for light pruning than the standard estimate. This was judged to be a level that could not maintain or increase the quality of street tree management. It was determined that an appropriate standard unit price for street tree management was necessary. To improve the quantity per unit for the proper management of street trees, it was necessary to review costs in the field. However, due to the absence of data on actual construction costs in the domestic landscape field, detailed items of the US RSMeans Building Construction Cost Data (RSMeans) were reviewed, and the actual construction costs were calculated by applying personal domestic expenses. As a result, the standard of the estimated unit showed a good ratio of 107% for heavy pruning of street tree pruning compared to the actual construction cost, but light pruning was underestimated with a 59% ratio. Shrub pruning was 82%, weeding was 92%, tree fertilization was 87%, and windbreak wall installation was 91% under-engineered. In addition, it was also confirmed that the watering by sprinkler trucks and chemical spraying were over-designed compared to the actual construction cost at the rates of 118% and 124%, respectively. Due to the specificity of the street trees, the increase in personal expenses and the input cost of equipment, such as road safety controls, were judged to be the main cause of the underestimation of items. Therefore, it is necessary to add items related to street trees and general landscape trees to the landscape maintenance items of the standard of the estimated unit.

Development of Traffic Accident frequency Prediction Model by Administrative zone - A Case of Seoul (소규모 지역단위 교통사고예측모형 개발 - 서울시 행정동을 대상으로)

  • Hong, Ji Yeon;Lee, Soo Beom;Kim, Jeong Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1297-1308
    • /
    • 2015
  • In Korea, the local traffic safety master plan has been established and implemented according to the Traffic Safety Act. Each local government is required to establish a customized traffic safety policy and share roles for improvement of traffic safety and this means that local governments lead and promote effective local traffic safety policies fit for local circumstances in substance. For implementing efficient traffic safety policies, which accord with many-sided characteristics of local governments, the prediction of community-based traffic accidents, which considers local characteristics and the analysis of accident influence factors must be preceded, but there is a shortage of research on this. Most of existing studies on the community-based traffic accident prediction used social and economic variables related to accident exposure environments in countries or cities due to the limit of collected data. For this reason, there was a limit in applying the developed models to the actual reduction of traffic accidents. Thus, this study developed a local traffic accident prediction model, based on smaller regional units, administrative districts, which were not omitted in existing studies and suggested a method to reflect traffic safety facility and policy variables that traffic safety policy makers can control, in addition to social and economic variables related to accident exposure environments, in the model and apply them to the development of local traffic safety policies. The model development result showed that in terms of accident exposure environments, road extension, gross floor area of buildings, the ratio of bus lane installation and the number of crossroads and crosswalks had a positive relation with accidents and the ratio of crosswalk sign installation, the number of speed bumps and the results of clampdown by police force had a negative relation with accidents.

Effectiveness Analysis for Traffic and Pedestrian Volumes of Pedestrian Pushbutton Signal (차량 및 보행자 교통량에 따른 보행자 작동신호기의 효과 분석)

  • Cho, Han-Seon;Park, Ji-Hyung;Noh, Jung-Hyun
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.33-43
    • /
    • 2007
  • Because usually signal controllers on the crosswalks of mid-block provide pedestrian signals every cycle based on the fixed signal plan, pedestrian signals are provided even when there is no pedestrian demand. Consequently, signal is operated inefficiently and this may cause drivels to experience useless delay or violate the signal. Even though recently pushbuttons have been installed to improve the efficiency of pedestrian signal control in the crosswalks of mid-block and the pedestrian safety. they are not spread out national-wide in Korea because of the cost of the pushbutton equipments and the lack of an acknowledgement of the efficiency of the pushbutton. In this study, the effectiveness of the pushbutton on saving the vehicle delay was verified through before and after study in 4 study sites using a traffic micro-simulation model, VISSIM. To evaluate the viability of the pushbutton, a benefit/cost analysis was also performed for 4 study sites. It was found that B/C ratio of all of 4 study sites was greater than 1. The sensitivity analysis for the traffic volume and pedestrian volume were performed to identify the impact of the both volume on the operation of pushbutton. And, a benefit/cost analysis was performed for all scenarios. It was found that when the pedestrian volume is greater than 90ped/h, the pedestrian signal was operated same as the fixed signal plan. That is, there is no benefit of pushbutton at all once the pedestrian volume is greater than 90ped/h. When the pedestrian volume is equal to or less than 90ped/h and the traffic volume is greater than 2,500veh/h, B/C ratio is greater than 1. Also it was found that as traffic volume increases and pedestrian volume decreases, the benefit increases. In this study, the criteria for installation of pushbutton on the crosswalks of mid-block are developed through the sensitivity analysis and benefit/cost analysis. The results of this study may be used as a criteria for expansion of pushbutton system.

  • PDF

Studies on Engneering Properties of Coal Ash Obtained as Industrial Wastes (산업폐기물(産業廢棄物)로 발생(發生)되는 석탄회(石炭灰)의 토질력학적(土質力學的) 특성(特性)에 관한 연구(硏究))

  • Chun, Byung Sik;Koh, Yong Il;Oh, Min Yeoul;Kwon, Hyung Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.115-123
    • /
    • 1990
  • The purpose of this study was to examine the uses of coal ash as a type of construction material. The methods of examination were chemical anlysis, soil laboratory test and the soil vibration test. Materials used were coal ash obtained as a by-product from 5 thermal power plants in Yongdong, Yongwol, Sochon(anthracite coal) and in Samchonpo and Honam (bituminous coal). Over 70% of the coal ash consisted of silica and alumina. The fly ash grain size showed a uniform distribution from fine-sand to silt, and that of the bottom ash showed from sand to gravel. The specific gravity and density of the coal ash were low. The long term strength increased gradually due to the self-setting property resulting from pozzolanic activity. The shear strength was higher than that of general soil. Cohesion and optimum moisture content of anthracite coal ash were higher than bituminous coal ash, whereas the maximum dry density was higher in bituminous coal ash. The coal ash dynamic Young's modulous curve range was similar to that of general soil. Of the results from the soil vibration test by car-running, the size relative acceleration level in the ash pond was higher than that of natural ground, but the damping ratio was lower than that of natural ground near the ash pond. The coal ash has more advantageous engineering properties than general soil with particles of the same size. For example, the California Bearing Ratio of the bottom ash at both Yongdong and Yongwol was 77~137%. Therefore we expect that if further study is done, coal ash can be used as a construction material when reclaiming seashore, construction embankments, road construction, making right-weight aggregate, or as a general construction material.

  • PDF

Release Strategy for the Red Fox (Vulpes vulpes) Restoration Project in Korea Based on Population Viability Analysis (개체군 생존력 분석을 이용한 여우복원사업 방사전략)

  • Lee, Hwa-Jin;Lee, Bae-Keun;Kwon, Gu-Hui;Chung, Chul-Un
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.417-428
    • /
    • 2013
  • The red fox (Vulpes vulpes), listed as a Class I endangered species by the Ministry of Environment of Korea, has been considered to be extinct in South Korea since the 1980s, and an intensive restoration project has been underway in Sobaeksan national park. This study was carried out to develop a suitable model for the red fox reintroduction program based on Population viability analysis (PVA) by using the VORTEX program. If 10 animals (5 females and 5 males) were continuously released into the initial zero population every year for 10 years, population growth rate and extinction probability over the next 50 years after the introduction of the population were $0.018{\pm}0.204$ and 0.354, respectively; the maximum population size was 116.34 at the 16th year after the first release, and a reduction rate of 1.22 every year from the 17th year was inferred. We found that additional releases would be needed from the 17th year after the initial release to maintain a positive growth rate and to prevent the extinction of the released red foxes, and releasing more than 12 individuals every year would be needed for the long-term, continuous existence of red foxes. By contrast, if fewer than 6 red fox individuals were released the extinction probability over the next 50 years was more than 80%. To maintain the minimum population growth rate, the release of more than 8 individuals were needed for positive population growth. The population growth rate was more stable when 10 animals in the change of their sex rate every year from the set value were released as the female-to- male sex ratio of 6:4 rather than 1:1. However, if the female-biased sex ratio was increased by more than 7:3, a negative population growth was expected. The occurrence rate of roadkill and poaching are important factors in the red fox restoration project. The extinction probability was decreased to 30% if each factor was decreased to 3% based on the standard baseline; however, if each factor was increased to more than 3%, an extinction rate of about 90% was reached over the next 50 years.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.