• Title/Summary/Keyword: ratio of response spectrum

Search Result 146, Processing Time 0.029 seconds

A Denoising Method for the Transient Response Signal (과도응답신호의 잡음제거기법)

  • Ho-Il Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.117-122
    • /
    • 2001
  • The shock test of shipboard equipments is performed for the evaluation of the shock-resistant. capability by analyzing the maximum acceleration, the effective time duration and the shock response spectrum, etc. But some measured signals have impulsive noise and gaussian white noise because of the ambient noise, the acquisition equipment error and the transient movement of cables during the shock test. The improved transient signal analysis method which removes the noise of measured signal using the threshold policy of the median filter and the orthogonal wavelet coefficients is proposed. It was verified that the signal-to-noise ratio was improved about 30dB by the numerical simulation. And the shock response spectrum was extracted using the denoised shock response signal which was applied by this proposed method.

  • PDF

Maximum Force Limit of velocity-dependent Damping Devices Using Response Estimation Models (응답예측모델을 이용한 속도의존형 감쇠장치의 최대제어력 산정)

  • Lee, Sang-Hyun;Park, Ji-Hun;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.60-65
    • /
    • 2003
  • In this study, for estimating responses of a controlled structure and determining the maximum control force of velocity-dependent damping devices, three estimation models such as Fourier envelope convex model, probability model, and Newmark design spectrum are used. For this purpose, a procedure proposed by Gupta (1990) for estimating spectral velocity using pseudo-spectral velocity which is given by the estimation models is used and modified to consider the effects of increased damping ratio by the damping device. Time history results indicate that Newmark design spectrum gives the best estimation of maximum control force for over all period structures.

  • PDF

Fatigue Damage Combination for Spread Mooring System under Stationary Random Process with Bimodal Spectrum Characteristics (바이모달 스펙트럼 특성을 가지는 정상확률과정에 대한 다점계류라인의 피로손상도 조합기법 연구)

  • Lim, Yu-Chang;Kim, Kyung-Su;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.6
    • /
    • pp.813-820
    • /
    • 2010
  • The spread mooring system for FPSO is developed to explore deep sea area, in which swell is dominant. It is known that the tension response of mooring lines in this sea area shows bimodal spectrum. Assuming normal distribution of tension profile and Rayleigh distribution of tension amplitude, the power spectral density function (PSD) of the mooring tension under the bimodal stationary random process is applied for the calculation of spectrum fatigue. Three popular methods, which are simple summation method, combined spectrum method and Jioa-Moan method, are used to combine fatigue damages from bimodal spectrum characteristics. Each damage value is compared with damage using Rainflow Cycle Counting (RCC) method which is believed to be close to exact solution. Vanmarcke' parameter and RMS(Root Mean Square) ratio are employed to assess relative damage variations between from RCC method and from three combination methods. Finally the most reliable fatigue damage combining method for spread mooring system is suggested.

An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis (시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석)

  • Mun, Dae-Ho;Park, Hong-Gun;Hwang, Jae-Seung;Hong, Geon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

Evaluation of Inelastic Displacement Ratios for Smooth Hysteretic Behavior Systems (완만한 이력거동 시스템에 대한 비탄성 변위비의 평가)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.11-26
    • /
    • 2011
  • The inelastic displacement ratio is defined as the ratio of the peak inelastic displacement to the peak linear elastic displacement. The inelastic displacement ratio allows simple evaluation of the peak inelastic displacement directly from the peak elastic displacement without computation of the inelastic response. Existing research of the inelastic displacement ratio is limited to piece-wise linear systems such as bilinear or stiffness degrading systems. In this paper, the inelastic displacement ratio is investigated for smooth hysteretic behavior systems subjected to near- and far-fault earthquakes. A simple formula of the inelastic displacement ratio is proposed by using a two step procedure of regression analysis.

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.

A Study on the Acceleration Response Amplification Ratio of Buildings and Non-structural Components Considering Long-Period Ground Motions (장주기 지진동을 고려한 건축물 및 비구조요소의 가속도 응답 증폭비)

  • Oh, Sang Hoon;Kim, Ju Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Structures of high-rise buildings are less prone to earthquake damage. This is because the response acceleration of high-rise buildings appears to be small by generally occurring short-period ground motions. However, due to the increased construction volume of high-rise buildings and concerns about large earthquakes, long-period ground motions have begun to be recognized as a risk factor for high-rise buildings. Ground motion observed on each floor of the building is affected by the eigenmode of the building because the ground motion input to the building is amplified in the frequency range corresponding to the building's natural frequency. In addition, long-period components of ground motion are more easily transmitted to the floor or attached components of the building than short-period components. As such, high-rise buildings and non-structural components pose concerns about long-period ground motion. However, the criteria (ASCE 7-22) underestimate the acceleration response of buildings and non-structural components caused by long-period ground motion. Therefore, the characteristics of buildings' acceleration response amplification ratio and non-structural components were reviewed in this study through shake table tests considering long-period ground motions.

Efficient damage assessment for selected earthquake records based on spectral matching

  • Strukar, Kristina;Sipos, Tanja Kalman;Jelec, Mario;Hadzima-Nyarko, Marijana
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • Knowing the response of buildings to earthquakes is very important in order to ensure that a structure is able to withstand a given level of ground shaking. Thus, nonlinear dynamic earthquake engineering analyses are unavoidable and are preferable procedure in the seismic assessment of buildings. In order to estimate seismic performance on the basis of the hazard at the site where the structure is located, the selection of appropriate seismic input is known to be a critical step while performing this kind of analysis. In this paper, seismic analysis is performed for a four-story reinforced concrete ISPRA frame structure which is designed according to Eurocode 8 (EC8). A total of 90 different earthquake scenarios were selected, 30 for each of three target spectrums, EC8 spectrum, Uniform Hazard Spectrum (UHS), and Conditional Mean Spectrum (CMS). The aim of this analysis was to evaluate the average maximum Inter-story Drift Ratio (IDR) for each target spectrum. Time history analysis for every earthquake record was obtained and, as a result, IDR as the main measure of damage were presented in order to compare with defined performance levels of reinforced concrete bare frames.

Analysis of Detection Performance of Radar Signal Processor with Relation to Target Doppler Velocity and Clutter Spectrum Characteristics (표적 도플러 속도와 클러터 스펙트럼 특성에 따른 레이더 신호 처리기의 탐지 성능 분석)

  • Yang, Jin-Mo;Shin, Sang-Jin;Lee, Min-Joon;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2011
  • MTI filter is used to separate target signal from clutter in many radar signal processing. By suppressing clutter before CFAR detection, the detection performance can be improved. As a radar system designed, a design engineer generally takes averaged SNR and CNR into account and does not include the effect of MTI filter's frequency response. In practice, when the signals including clutter are pass through the filter, SNR is widely varying according to target velocity and CNR is also varying according to clutter center frequency and spectrum spreading. In this paper, we have derived the relationship between the MTI filter's frequency response and a target's velocity and a clutter's spectrum characteristics. With the variation of SNR and CNR at the filter output, the detection performance of CFAR has been analyzed by the simulation and has made certain of their influences on the performance.

Effect of Stiffness and Strength Degrading Model on Evaluating the Response Modification Factor (강성 및 강도저하 모델이 반응수정계수 산정에 미치는 영향 평가)

  • 오영훈;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.25-32
    • /
    • 1998
  • Most recent seismic design codes include Response Modification Factor(RMF) for determining equivalent lateral forces. The RMF is used to reduce the linear elastic design spectrum to account for the energy dissipation capacity, overstrength and damping of the structure. In this study the RMF is defined as the ratio of the absolute maximum linear elastic base shear to the absolute maximum nonlinear base shear of a structure subject to the same earthquake accelerogram. This study investigates the effect of hysteretic model, as well as target ductility ratio and natural period on duct based RMF using nonlinear dynamic analyses of the SDOF systems. Special emphasis is given to the effects of the hysteretic characteristics such as strength deterioration and stiffness degradation. Results indicate that RMFs are dependent on ductility, period and hysteretic model.

  • PDF